
Best
Available

Copy

REPORT DOCUMENTATION PAGE

_V -ONC Uft Xaf. WO -" Am u~~ ns~

940325SI.11352, AVV: 94ddc5OO_3d. Compiler: DACS Sun SPARC/

aonais to Pentium PM Bare Ada Cross Compiler System, Version< I
National Institute of Standards and Technology
Gaithersburg, Maryland

7. PSWnOOM oXM~dAP=TX MUM AM

IC11fa jgg~ib 0,tandards and Technology A -A280 295
Gaithersburg. Maryland 20899

rWpo"O.ft * IaD T IC
Wa0*0mn, DC 2=030=~S ELECTEI

Approved for Public Release; -distribution unlimited

Most: Sun SPARCclasuic (under Solari*. Release 2.1)
Target: Intel Xpress Desktop (product number XIASE6EAT-3. with Pentium cpu). operatingS
as a bar@ &&chinoe (bar@ machino)

14 WW

Ads programing linguag*. Ads Compler Validation Siimy Rteport,
W~ff M. 101A AYVal. Testing, Ada Val. Office, Ada Val. cl y

- - ~ SWD _

t~d ,

AV? Control Number: NIST94DDC500_3D1.11

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on March 25, 1994.

Compiler Name and Version: DACS Sun SPARC/Solaris to Pentium •M Bare
Ada Cross Compiler System, Version 4.6.4

Bost Comuter System: Sun SPARCclassic running under Solaris,
Release 2.1

Target Computer System: Intel Pentium (operated as Bare Machine)
based in Xpres Desktop (Intel product
nmber: XAS624F-B)

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
94032581.11352 is awarded to DDC-I. This certificate expires 2 years
after ANSI/NIL-STD-1815S is approved by ANSI.

This report ha been review and is approved.

on Valldtio pclity
Dr. David . rnoln
Chief, Information Systems Manager,, oftware Standards

Ingineering Division (IBM) Validation Group
Computer Systems aboratory (CSL)

National Institute of Standards and Technology
Building 225, Room A266

Gait•--eburg, Maryland 20899
U.S.A.

Ada Von Ogan~ztionAda Jointt Program Office
De & Software David R. Basel

thgineering Division Deputy Director,
Institute for Defense Analyses Ada Joint Program Office
Alexand-ia VA 22311 Defense Information systems Agency,

Center for Information Management
Washinqton DC 20301

U.S.A.

94-16090
""945 27 051

AVF Control Number: NIST94DDC500_3D_1.11
DATE COMPLETED

BEFORE ON-SITE: 94-03-18
AFTER ON-SITE: 94-03-28
REVISIONS: 94-04-11

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 940325S1.11352
DDC-I

DACS Sun SPARC/Solaris to Pentium PM Bare Ada
Cross Compiler System, Version 4.6.4

Sun SPARCclassic -> Intel Pentium (operated as Bare Machine)
based in Xpress Desktop (Intel product number: XBASE6E4F-B)

Prepared By:
Software Standards Validation Group

Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899

U.S.A.
Accesion For

NTIS CRA&I
DTIC TAB 0
Ui,aiou;;.ed
Ji.stificaton.

By
D,.-t ib~ition

Availat.;;!y Co~es

01st Special

A-

AVF Control Number: NXST94DDCSOO 3D 1.11

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on March 25, 1994.

Compiler Name and Version: DACS Sun SPARC/Solaris to Pentium PM Bare
Ada Cross Compiler Systam, Version 4.6.4

Host Computer Systam: Sun SPARCclassic running under Solaris,
Release 2.1

Target Computer System: Intel Pentium (operated as Bare Machine)
based in Xpress Desktop (Intel product
number: XBASE6E4F-B)

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
940325S1.11352 is awarded to DDC-I. This certificate expires 2 years
after ANSI/NIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

D.David on c Valdato Facility

SDer Mr. L. Arnol••7<son
Chief, Information Systems Manager, Software Standards

Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CSL)

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899
U.S.A.

azi Ada Joint Program office
Directoz','Coputer & Softvare David R. Basel

Enqineering Division Deputy Director,
Institute for Defense Analyses Ada Joint Program Office
Alexandria VA 22311 Defense Information Systems Agency,

Center for Information Management
Washington DC 20301

U.S.A.

~ f11~ai ~ca~~ ~~ MuuUM= bym L.

axtmS M:IO-Z

SAdr 225. AM-dac~ m~ym -0
UJ.L

A= vacimL 1.

A& M~imtM~in

an ~m vi-~ No in sc/1wds z pth=o I*am A&
C= ma &JIM Si cd 4.6

a= cow *a m aNfdasulic vmwn =1K SgUa&
kolnun 2.1

-- ~tM Nit= - da fa~itilm O~Wud bw Nx& I bAU mI
ia Ip edm m pW= zmo

A& umw -%Mftd mm IOD m =D~c ~Inm hin f

/ 9oeA& f v4-zz

Owf nw

~v am@

TABLE OF CONTENTS

CHAPTER 1 * * P* * * * *.............-INATERODUCTION.......................... o. o.1-1

1.1 USE OF THIS VALIDATION SUMMARY REPORT...........1-1
1 .2 REFERENCES *********1-2

1.3 ACVC TEST CLASSES... o * *999o99... 99 .9.1-2
1.4 DEFINITION OF TERMS o.1-3

CHAPTER 2.......*...2-1IMPLEENATION DEPENDENCIES • •2-
2.1 WITHDRAWN TESTS 2-1
2 .2 INAPPLICABLE TESTS 2-1
2 .3 TEST MODIFICATIONS 2-3

CHAPTER 39.....*3-1
PROCESSING INFORMATION..o. . *3-1

3 .1 TESTING ENVIRONMENT. 3-1
3o2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 9...... ..9.999.99...3-2

APPENDIX A. * 9...... 9.................. A-1MACRO PARAMETERS v.........A-1

APPENDIX B. 9 *........... B-1
COMPILATION SYSTEM OPTIONS *..........*..... B-
LINKER OPTIONS o**o .*. ...B-2

APPENDIX C
APPENDIX F OF THE Ada STANDARD o............. C-1

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro92] against the Ada Standard EAda83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro92). A detailed description
of the ACVC may be found in the current ACVC User's Guide EUG893.

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161
U.S.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, Virginia 22311-1772
U.S.A.

1-1

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Proarammina Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Coupiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[UG89] Ada Co02iler Validation CaDabilitv User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The-ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of A test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provf-des a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values--for example, the

1-2

largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and (UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of
Capability (ACVC) the test suite, the support programs, the

ACVC Capability User's Guide and the
template for the validation summary (ACVC)
report.

Ada Implementation An Ada compiler with its host computer
system and its target computer system.

Ada Joint Program The part of the certification body which
Office (AJPO) provides policy and guidance for the Ada

certification Office system.

Ada Validation The part of the certification body which
Facility (AVF) carries out the procedures required to

establish the compliance of an Ada
implementation.

Ada Validation The part of the certification body that
Organization (AVO) provides technical guidance for operations

of the Ada certification system.

Compliance of an The ability of the implementation to pass an
Ada Implementation ACVC version.

1-3

Computer System A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- written or user-designated
programs; performs user-designated data
manipulation, including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process, or
service of all requirements specified.

Customer An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring
Conformance that conformity is realized or attainable on

the Ada implementation for which validation
status is realized.

Host Computer A computer system where Ada source programs
System are transformed into executable form.

Inapplicable Test A test that contains one or more test
objectives found to be irrelevant for the
given Ada implementation.

ISO International Organization for
Standardization.

LRM The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-1815A
-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:
<paragraph>."

Operating System Software that controls the execution of
programs and that providea services such as
resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

Target Computer A computer system where the executable form
System of Ada programs are executed.

1-4

Validated Ada The compiler of a validated Ada
Compiler implementation.

Validated Ada An Ada implementation that has been
Implementation validated successfully either by AVF testing

or by registration [Pro92].

Validation The process of checking the conformity of an
Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

Withdrawn Test A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 104 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVV. The publication date for
this list of withdrawn tests is 93-11-22.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C35508I C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54B02A C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BDIB02B BDlB06A
ADlB08A BD2AO2A CD2A21E CD2A23E CD2A32A CD2A4lA
CD2A41E CD2A87A CD2B15C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4n3lA CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE2107I CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)

C35706L..Y (14 tests) C35707L..Y (14 tests)

2-1

C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113I..K (3 tests) use a line length in the input file which
exceeds 126 characters.

C35404D, C45231D, B86001X, C86006E, and CD71OG check for a
predefined integer type with a name other than INTEGER,
LONG INTEGER, or SHORT_INTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

C35713D and B8600lZ check for a predefined floating-point type with
a name other than FLOAT, LONG_FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAXMANTISSA Es less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINEOVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINEOVERFLOWS is TRUE.

C4A013B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type;
this expression is rejected by the compiler.

D56001B uses 65 levels of block nesting; this level of block
nesting exceeds the capacity of the compiler.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as
allowed by AI-00408 and AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

2-2

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A84O use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

The following 264 tests check operations on sequential, text, and
direct access files: this implementation does not support external
files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE210SA..H (8) CE2109A..C (3)
CE211OA..D (4) CE2111A..I (9) CZ2115A..B (2) CE212OA..B (2)
CZ2201A..C (3) 2E2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) UZ2401D CE2401E..F (2) EE2401G
C2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107 CE310A..B (2) CE3109A CE3l1OA
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE34048..D (3) CE3405A EE3405D
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704H..O (3) CE37O5A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..D (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an
attempt to create a file and expect NAME ERROR to be raised; this
implementation does not support externial files and so raises
USE_ERROR. (See section 2.3.)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 71 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in

2-3

the way expected by the original tests.

B22003A B26001A B26002A B26005A B28003A B29001A B33301B
B35101A B37106A B37301B B37302A B38003A B38003B B38009A
B38009B B55A01A B61001C B61001F B61001H B61001I B61001M
B61001R B61001W B67001H B83AO7A B83A07B B83A07C B83EOlC
B83E01D B83EOlE B85001D B85008D B91001A B91002A B91002B
B91002C B91002D B91002E B91002F B91002G B91002H B91002I
B91002J B91002K B91002L B95030A B95061A B95061F B95061G
B95077A B97103E B97104G BA1O01A BAl101B BC1109A BCl109C
BC1109D BC1202A BC1202F BC1202G BE2210A BE2413A

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified- by inserting
"PRAGMA ELABORATE (REPORT);" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENT INT at lines 14 and 13,
respectively, will raise PROGRAM_ERROR.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CE2103A, CE2103B, and CE3107A were graded inapplicable by
Evaluation Modification as directed by the AVO. The tests abort
with an unhandled exception when USE ERROR is raised on the attempt
to create an external file. This Is acceptable behavior because
this implementation does not support external files (cf. AI-00332).

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical information about this Ada implementation, contact:

Forrest Holemon
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)

Telephone: 602-275-7172
Telefax: 602-275-7502

For sales information about this Ada implementation, contact:

Mike Halpin
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 IT, S.A.)

Telephone: 602-275-71"2
Telefax: 602-275-7502

Testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro92].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system--if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

a) Total Number of Applicable Tests 3562

b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 504
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 504 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite a section
1.3) was taken on-site by the validation team for procebsing. The
contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation. The DDC-I
Ada downloader runs on the host machine and is used for downloading
the executable images to the target machine. The DDC-I Debug
Monitor runs on the target machine and provides communication
interface between the host dovnloader and the executing target
machine. The two processes communicate via ethernet.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target
computer system by the communications link described above, and
run. The results were captured on the host computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

-list

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in (UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line length, which is the value for
$MAX IN LEN--also listed here. These values are expressed here as
Ada strIng aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAXINLEN 126 -- Value of V

SBIGID1 (l..V-1 => 'A', V -> '1')

$BIGID2 (1..V-1 •> 'A', V => '2')

SBIGID3 (1..V/2 -> 'A') & '3' & (I..V-l-V/2-> 'A')

$BIGID4 (l..V/2 => 'A') & '4' & (l..V-I-V/2-> 'A')

SBIGINTLIT (1..V-3 1> '0') & "298"

SBIGREALLIT (l..V-5 1> '0') & "690.0"

SBIGSTRING1 '""' & (I..V/2 -> 'A') & '""'

SBIGSTRING2 '""' & (l..V-I-V/2 I> 'A') & 'I' & '""'

$BLANKS (l..V-20 => '

SMAXLENINTBASEDLITERAL
"2:" & (1..V-5 -> '0') & "11:"

SMAXLENREALBASEDLITERAL
"16:-" & (1..V-7 -> '0') & "F.E:"

$MAXSTRINGLITERAL '""' & (1..V-2 -> 'A') & '""'

A-1

The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value
------- ------- ------- ------- ---- ---- - - - - - - - - - -

ACC SIZE : 48
ALIGNMENT : 2
COUNT LAST : 2 147 483 647
DEFAULTMENSIZE : i6#1_00000000#
DEFAULTSTOR UNIT : 16
DEFAULT SYS NAME : IAPX586 PM
DELTA DOC - : 2#1.0#k-31
ENTRY ADDRESS : (140,0)
ENTRY ADDRESS1 : (141,0)
ENTRY ADDRESS2 : (142,0)
FIELDLAST : 35
FILE TERMINATOR : ASCII.SUB
FIXED NAME : NO SUCH FIXED TYPE
FLOAT NAME : SHORTSHORTFLOAT
FORMSTRING : ""
FORMSTRING2

"CANNOT RESTRICTFILECAPACITY"
GREATER THANDURATION : 75_000.0
GREATER THAN DURATION BASE LAST : 131_073.0
GREATER -THAN-FLOAT BASE LAST : 16#I.O#E+32
GREATER- THAN_-FLOAT SAFE-LARGE : 16#5.FFFF_FO#E+31
GREATER THAN SHORTFLOATSAFELARGE: 1.0E308
HIGH PRIORITY : 31
ILLEGAL EXTERNAL FILE NAME1 : \NODIRECTORY\FILENAME
ILLEGALEXTERNALFILE-NAME2

THIS-FILE-NAME-IS-TOO-LONG-FOR-MY-SYSTEM
INAPPROPRIATELINE LENGTH : -1
INAPPROPRIATE PAGE LENGTH : -1
INCLUDEPRAGMAl

PRAGMA INCLUDE ("A28006D1.ADA")
INCLUDE PRAGMA2

PRAGMA INCLUDE ("B28006E1.ADA")
INTEGER FIRST : -2147483648
INTEGERLAST : 2147483647
INTEGER LAST PLUS 1 2 147 483 648
INTERFACE LANGUAGE : ASM86- -
LESS THAN DURATION : -75 000.0
LESS-THAN -DURATIONBASEFIRST : -131_073.0
LINE TERMINATOR : ASCII.CR
LOW PRIORITY : 0
MACHINECODESTATEMENT

MACHINE INSTRUCTION' (NONE,m_NOP);
MACHINE CODE TYPE : REGISTERTYPE
MANTISSADOC : 31

A-2

MAXDIGITS : 15
MAXINT :9223372036854775807
MAX_-INTPLUS_1 : 9223372036854775808
MININT : -9223372036854775808
NAME : SHORT SHORT INTEGER
NAME_-LIST : IAPX586_PM
NAMESPECIFICATIONi

DISK$AWCý_2: (CROCKETTL. ACVC11 .DEVELOPMENT] X2 120A
NAMESPECIFICATION2

DISK$AWC_2: [CROCKETTL.ACVC11.DEVELOPMENT]X2120B
NAME SPECIFICATION3-

DISK$AWC_2: [CROCKETTL.ACVC11.DEVEWOPMENTJX3119A
NEGBASEDINT : 16#FFFFFFFFFFFFFFFF#
NEW HEM SIZE : 16#1_00600_6O00#
NEW STOR- UNIT : 16
NEWBYSNAME : IAPX586_PM
PAGE TERiMINATOR : ASCII.F-F
REC0ORDDEFINITION : RECORD NULL;END RECORD;
RECORDNAME : NOSUCHMACHINECODET'YPE
TASKSIZE : 32-
TASKSTORAGESIZE :1024
TICK' : 0.000_T000 062 5
VARIABLE ADDRESS : (16#0#,l6#44#)
VARIABLEADDRESS.1 : (16#4#,16#44#)
VARIABLEADDRESS2 : (16#8#,16#44#)
YOURPRAGMA : EXPORTOBJECT

A-3

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-1

5 THE ADA COMPILER

The Aft Compiler omupiles ail prosram units within the specified source file and inserts the
generited objects into the current prolrm library. Compiler options am provided to allow the
user control of optimiation. nm-tme checks, and compiler iput and output options such as list
ties, configuration files, the program library used. ec.

The inm to the compiler conmits of the source file. e configuraton file (which controls the
format of the list file), and the compiler options. Section 5.1 provides a list of all compiler
options. and Secon 5.2 describes the sour= aid configuration files.

If any diagnostic messages ae produced during the compilation, they are output on the diagnostic
file and on the curent output Fle. The diagrnoic file and the diastic messages awe described
in Section 5.32.

Output consists of an object placed in the program library, diagnostic messages, and optional
listings. The configuration file and the compiler options specify the format and contents of the
list information. Output is described in Section 5.3.

The compiler uses a program library during the compilation. The compilation unit may refer to
units from the program library, and an internal .eon of the compilation unit will be
included in the progran library as a result of a successful compilation. The progran library is
described in Chapter 3. Section 5.4 briefly describes how the Ada compiler uses the library.

5.1 Invoking the Ada Compiler

Invoke dhe Ada compiler with the following command to the SunOS sheU

S ada (<opflin}) <source-ffe-name-

where the options and parameters ae:

35

DACS-4x86 User's Guide
Ada Compiler

OPTION DESCRIPTION REFERENCE

-[no autojqlne Specifies whether local subprograms should be 5.1.1
inlin eipmde&

-check Coerols nm-tme checks. 5.1.2
-confsguiradl.Me Specifies the configuramon file used by t 5.1.3

compiler.
.[noidebug Inldes symbolic debugging informma in 5.1.4

puvpn Library. Does not include symbolicinfttuidm.

.(nolntpolntouanding Generaes fixed poit rounding code. Avoids fixed 5.1.5
poi murang code.

-[nolfioat-allowed Flags eneramion of Rost insuctions ns 5.1.6
emr if selected.

-(no~library Specifies progrmn library used. 5.1.7
-(nolast Writes a source listing on the list file. 5.1.8
.(nojopthniie Specifies compiler optmizaton. 5.1.9
-(nolproveu Displays compiler p .ogress 5.1.10
-[mojref Create a croMs reference listing. 5.1.11
-(nolsave source Copies source to progran libray. 5.1.12
-(no tarptdebug Includes irml debug information. Does not include 5.1.13

Inel debug infaoiation.
-unit Assigns a specific unit manber to de compilation 5.1.14

(mum be free md in a sublib•ary).
-recompile Imterret the file name as a compilati unit body

do mmuo be recompiled ftom library. 5.1.15
.specification With -recompil interpm file .me as a

compilaion unit specification rater than body. 5.1.16

Examples:

$ ada -l.ist tostpuig

This example compiles de source file temprogwh and generates a list file with the name

$ ads -itiary My_-nb y tot

This example compiles tae source file test.ada into the library mYj1lbwY.

Default values exist for mo options as indicmWd in the follOwing secton Option names may
be abbrvimad (characts• omited frm the rfigh) as long u no ambiguity armes.

36

.I

DACS-80xS6 User's Guide
Ada Cm•mie

4amuee.lie-Gamm,

The Afa compiler has a mandmory pume ae dmsh d specify he Ada soum file.
This M eter specifies the mxt fil comalning te muee ext to be compiled If the fde type
is omitted in de sowee file sp•-i•moa, die fl type "d" is ssumed by default.

The allowed forma of tde sma tYe is described in Section 51.1.

Below follows a dgsepuon of cut of the avlal optione• 0 die invocation of the Ada
compiler-

5.1.1 .(foabass inline

-a.m o ie hea I -OW
.uewo iull (defasl)

This option species whether mbpwogas shoud be inlim 4 Pd The inline expasion only
occurs if the = rp u his less din 4 objm decdar m and less tian 6 smemems. and if die
mbmg &m the rierpmm defned for pagtm U41L E (se Section C.2.3). LOCAL
specifies tha only inline expansion of locally defined mbptogzus should be done. while
GLOBAL will cause nine expaion of al U*Vognms including suPuo1gus fimo other units.

S.1.2 -check

-check i ,kywwd. . ON I OFF ' 4mdywavd u ON I OFF) I
-check ALLON (defaul)

-check specifies which nm-ume checks should be Wefmuued. Seting a rut-lime check 10 ON
enables tie check. while semng it to OFF disables tie check. All nwli checks ame erab by
defaUL The following explicit checks will be a' - _L- by using die nae as <keyword>:

ACCESS Check for access values being on NULL
ALL AJD checks.
DISCRINIUNANT Checks for discrinilined fieds.
ELABORATION Checks for up•ogruns beg elabonad.
INDEX Index check.
LENGTH ArMy length check
OVERFLOW Explicit Overflow checks
RANGE Checks for vluies being in rtug.
STORAGE Checks for nuficim map availabl.

37

DACS-OJX86 User's Guide
A Compiler

amfParadussule asfig WNWagt
This opton specifis the conflgwuo fde to be used by th compiler in ft cunmm compilo
The confhu'mian file allows da user to totat compiler liasts. su aem limizi etc. If the
option is omiaed the onfumion file coomf locand in de same diec•ory as the Ada compiler
is used by dadiL Secon 5.2.2 cenmtaes a dactaiin of Me configwuwn Mie.

&.1.4 -(mldmbug

Gewenu debug infornmaio for 1w compilaion and store de infonuon in 1w pogram library.
Thi is mcesay if the unit is to be debuSed with te DDC-l da Symbolic Cross Debugge.
Note that th poiam n amm beo be hizd wiu the 1 daw opoon. i the program is to be
debutSed with te DOC.I -A& Symbolic Cims Debuger. See Seamti 6.5.1 1.

S.13 .Imjflsim-romading

zpWns lrwumwbg (dfaak)

Nonmay all inl• S, g-eared code for fixed pont MULTIPLY and DIVIDE is m14d. but this
may be avifdd with 4aflxPoiWsrymqf. nlidne code is gnermed foAw oil 16 bit fixed point
types and for 32 bit fixed pow types, whoen the ps is 0033M or ISO4SPM.

3.1.6 ,Im.Ilhmsh~.awe

.*leet s~ewed (defuak)
46-

Flora lavcta gelrumni may be flq sed uim e. If 4elemm is ueIcmd. Ttha is for we in
ys)ams. wisma no floamin palm pm. (nor rq) is a, al*IL Noui~e m "tlEXTJO masfloe0 86n cWImaua w FLOIAT.O I a d F10EDO.

3,

DACS-80x6 User's Guide
Ada Compiler

5.1.7 4-lbrary

-library <ftle-spec
-library SadaJibrary (default)

This option specifies the current sublibrazy that will be used in the compilation and will receive
the object when the compilation is complete. By specifying a currnt sublibrary. the current
program library (current sublibrary and ancestors up to root) is also implicitly specified.

If this option is omitted, the sublibrary designated by the envimnmental variable adajlibrary is
used as the current sublibrary. Section 5.4 describes how the Ada compiler uses the library.

5.1.8 -(nollist

-list
-nolist (default)

-list specifies that a source listing will be produced. The source listing is written to the list tile.
which has the name of the source file with the extension Jis. Section 5.3.1.1 contains a description
of the source listing.

If -nolist is active, no source listing is produced, regardless of LIST pragmas in the program or
diagnostic messages produced.

5.1" -opUmine

opfim= I <keyword> a on I on ,<keyword> a on I off
-optimize alloff

This option specifies which optinmiations will be performed during code generation. The possible
keywords am: (casing is irrelevant)

ail All possible oprmizaios am invoked.
check Eliminau s superfluous checks.
c" Performs common subexpoession elimination including common

addres eiqessotw
tctWproc Owig fim:ction calls tre ing objects of constrained array types

or objects of record types to proceduie calls.
reordering Trusfoms named aigues to positional awggpaes and named

pasmWe associsiom t poziona! associai•son.
sW*bheght Perfom stck beit miuach• im (also called Aho Ullman

block Opimi lock and call fhines.

Seting a optiminuson to on enables the optimizmlon while seting an optimizaion to off disables
the opumizaoour All opsmamiam au disabled by def•ul In adidon to the optional
opumiaons. the compiler always pezims de foWowing optimlz•dons: conswn folding, dead
code eliminato. and selection of optimal jumnW

39

DACS-80rA6 User's Guide
Ada Compiler

5.1.10 -(molpuopus

-progress
-1prorpn (default)

When dis option is given. the camp will ouput dm about which pess de compiea is
cummly irwlg.

&1.11 .-(olirur

-noster (default)

A cs-Mefetence listing c be requested by the user by me=. of the option -xref. If the -ad
option is given and no sever or final enus an bond durn the compiladOn, the C0a4-reteMnre
listing is wriuen to the list file. The cre-.ree listing is described in Section'.

5.1.12 -[noJinOs omMM

-*ve SOm (defaut)
-inoue some,

When -save-source is specified. a copy of the comvped bourP code is piaced in ftpe sum
library. If -unoa sormw is used sourc code will ot be PrLlnPd in the preogm library.

Using -noseve.soewcs while helping to keep Ubuuy sizm maller. does affect the operaton of
the recompiler. see COqa 7 for moms details. Also. iI will n• n be to do symbolic
debugging a the Ada soume code level with the DACS4-XS6 Symbolic Ada Debugger. if the
source code is not saved in the library.

5.1.13 -(noltarut_debug

-mtarpi_ debu deuk

Specifies whetr symbolic debg bdamuam on stiudard OF6 is ncuded in the object O
Curnuy the liter does not dppot OfAn debug infotmiato.

Trhs option may be used whim deugging wi snda OWF ools (Le., MCE(

DACS-$0x86 User's Guide
Ada Compiler

&.1.14 -uoit

The specified umit amber will be asigned to die compilation unit if it is free and it is a legal
unt number for the library.

3.1.13 -rewomplh

The Me name (soure) is inierprewd u a compilation unit name which has Its source saved from
a pt-Vous compilation. If -specdltkCM is not speci it is umued to be body which must be
recoiMpMPU.

5.1.16 .speclifcation

. necfication

Works only together with -rewmplle. see Section 5.1.15.

5.2 Compile' Input

Input to die compiler consi of the command line options. a source text file aid. optionally, a
conflguraton fle.

52.1 Source Teat

The user submits one file coniaiing a source txt in each compilation. The source text may
comnsi of one or mote compilation units (see ARM Section 10.1).

The format of the source trx must be in ISO-FORMAT ASCMIb Ti format requires that the
souCe teXt is a e of ISO charactrs (ISO stantdar 646), where each line is twminated by
tither one of the fWowing termination sequences (CR means carviage reimo. VT means vertical
tabulabon LF meaus lin feed, and FF mcans foarm ked):

"* A sequence of one or more CRs. wherm the seu:i is neither inmied•lay preceded nor
immediately followed by any of the Pah-aaeu VT. LF. or FF.

"• Any of thde cwbrac VT. LF. or FF. immediately preceded and followed by a sequence of zew
or mom CRS.

In general. ISO conrol characers ar not rpemited in the sourc text wth the fowing
exceptuion

41

DACS-80x86 User's Guide
Ada Compiler

"* The horizontal tabulation (HT) character may be used as a separator between lexical units.

"• LF. VT. FF. and CR may be used to terminate lines, as described above.

The maximum number of characters in an input line is determined by the contents of the
configuration file (see section 5.1.3). The control characters CR. VT. LF, and FF ae not
considered a pan of the line. Lines containing more than the maximum number of characters are
truncated and an error message is issued.

S.=2 Configuration File

Certain processing characteristics of the compiler, such as format of input and output. and error
limit. may be modified by the user. These characteristics are passed to the compiler by means
of a configuration file, which is a standard SPARC/SunOS text file. The contents of the
configuration file must be an Ada positional aggregate, writen on one line, of the type
CONFIGURATION-RECORD. which is described below.

The configuration file (config) is not accepted by the compiler in the following cases:

"• The syntax does not conform with the syntax for positional Ada aggregates.
"• A value is outside the ranges specified.
"• A value is not specified as a literal.
"• LINESPERPAGE is not greater than TOPMARGIN + BOTTOM-MARGIN.
"* The aggregate occupies more than one line.

If the compiler is unable to accept the configuration file, an error message is written on the
current output file and the compilation is terminated.

This is the record whose values must appear in aggregate form within the configuration file. The
record declaration makes use of some other types (given below) for the sake of clarity.

42

DACS-800x86 User's Guide
Ada Compiler

type CONFIGURATION RECORD is
record

IN FORMAT: INFORMATTING;
OUT FORMAT: OUTFORMATTING;
ERROR LIMIT: INTEGER;

end record;

type INPUT-FORMATS is (ASCII);

type INFORMATTING is
record

INPUT FORMAT: INPUT FORMATS;
INPUT-LINELENGTH: INTEGER range 70..250;

end record;

type OUTFORMATTING is
record

LINES PER PAGE : INTEGER range 30..100;
TOP-MARGIN : INTEGER range 4.. 90;
BOTTOM-MARGIN : INTEGER range 0.. 90;
OUT-LINELENGTH : INTEGER range 80..132;
SUPPRESSERRORNO : BOOLEAN;

end record;

The outformaning parameters have the following meaning:

1) LINESPERPAGE: specifies the maximum number of lines written on each page
(including top and bottom margin).

2) TOP-MARGIN: specifies the number of lines on top of each page used for a standard
heading and blank lines. The heading is placed in the middle lines of the top margin

3) BOTTOM_MARGIN: specifies the minimum number of lines left blank in the bottom of
the page. The number of lines available for ihe listing of the pvogram is LINES
PER-PAGE - TOP-MARGIN - BOTrOMMARGIN.

4) OUT-_NELENGTH: specifies the maximum number of characters wrtten on each line.
Lines longer than OUTLINELENGTH am separated into two lines.

5) SUPPRESSERRORNO: specifies the format of error messages (see Section 5.3.5.1).

The name of a user-supplied configuration file can be passed to the compiler thugh the
configurauon-file option. DDC-I supplies a default configuration file (config) with the following
content:

43

DACS-80x86 User's Guide
Ada Compiler

((ASCII. 126). (48,53,100.FAL.SE). 200)

TOP

Out~inejength

Figure 5-1. Page Layout

S.3 Compiler Output

The compiler may produce output in the list file. the diagnostic file and the currenm output file.
It also updates the program library if the compilation is successful The present section describes
the text output in the three fies mentioned above. The updating of the program library is
described in Section 5.4.

The compiler may produce the following text output:

1) A listing of the source text with embedded diagnostic messages is wriuen on the list file,
if the option -list is active.

2) A compilation summary is written on the list file, if -list is active.

3) A cross-reference listing is written on the list file, if -xref is active and no severe or fatal
errors have been detected during the compilation.

4) If them am any diagnostic messages, a diagnostic file containing the diagnostic messages
is -nten.

5) Diagnostic messages other than wamins are writtn on the current output file.

44

DACS-80x86 User's Guide
Ada Compiler

5.3.1 The List File

The name of the list file is identical to the name of the source file except that it has the file type
".lis". The file is located in the current (default) directory. If any such file exists prior to the
compilation, the newest verson of the file is deleted. If the user requests any listings by
specifying the options -list or -iref. a new list file is created.

The list rile may include one or mom of the following pars: a source listing, a cross-reference

listing, and a compilation summary.

The pans of the list file are separated by page ejects. The contents of each pat are described in

the following sections.

The format of the output on the list file is controlled by the configuration file (see Section 5.2.2)
and may therefore be controlled by the user.

5.3.1.1 Source Listing

A source listing is an unmodified copy of the source text. The listing is divided into pages and

each line is supplied with a line number.

The number of lines output in the source listing is governed by the occurrence of LIST pragmas
and the number of objectionable lines.

"* Pans of the listing can be suppressed by the use of the LIST pragmL

"* A line containing a construct that caused a diagnostic message to be produced is printed even
if it occurs at a point where listing has been suppressed by a LIST pragma.

S.3.1.2 Compilation Summary

At the end of a compilation, the compiler produces a summary that is output on the list file if the

option -list is active.

The summary contains information about:

1) The type and name of the compilation unit, and whether it has been compiled successfully
or not.

2) The number of diagnostic messages produced for each class of severity (see Section
5.3.2.1).

3) Which options were active.

4) The full name of the source fide.

5) The full name of the current sublibrary.

6) The number of source text lines.

45

DACS-80x86 User's Guide
Ada Compiler

7) The size of the code produced (specified in bytes).

8) Elapsed real time wmd elapsed CPU time.

9) A "Compilation terminated" message if the compilation unit was the last in the compilation
or "Compilation of next unit initiated" otherwise.

5.3.1.3 Crou-Refu'ace Lisifg

A cross-reference listing is an alphabetically sorted list of the identifiers. opeaors andi character
literals of a compilation unit. TMe list has an entry for each entity declared and/or used in the
unit, with a few exceptions stated below. Overloading is evidenced by the occunence of multiple
entries for the same identifier.

For instandations of generic units. the visible declarations of the geneic unit am included in the
cross-reference listing as declared immediaely after the instantiation. The visible declarations ae
the subprogram parameters for a generic subprogram and the declarations of the visible part of the
package declaration for a generic package.

For type declarations, all implicitly declared operations are included in the cross-reference listing.

Cross-reference information will be produced for every constituent character literal for suing
literals.

The following are not included in the cross reference listing:

"* Pragma identifiers and pragma argument identifiers.

"• Numeric literals.

"* Record component identifiers and discriminant identifiers. For a selected name whose selector
denotes a record component or a discriminant. only the prefix generates cross-reference
information.

"• A parent unit nune (following the keyword SEPARATE).

Each entry in the cross-refera•ce listing contains:

"• The identifier with, at most. IS characters. If the identifier exceeds 15 characters, a bar ("r)
is written in the 16th position and the rest of the characters ame not prined.

"* The place of the definition, i.e.. a line number if the entity is declared in the cuannt
compilation unit. otherwise the name of the compilation unit in which the entity is declared
and the line number of the declaration.

"* The numbers of the lines in which the entity is used. An amdsk ("*") after a line number
indicates an assiagnent to a variable, initialization of a constant, assignunems to functions, or
user-defined operators by means of RETURN statements. Please refer to Appendix B.3 for
examples.

46

DACS-g0xl6 User's Guide
Ada Compiler

5.3.2 The Dagstk Fle

The name of the diagnostic file is identical to the name of the source file except that it has the
file type ".err". It is located in the curent (default) directory. If any such file exists prior to the
compilation. the newest version of the file is deleted. If any diagnostic messages are produced
during the compilation a new diagnostic file is created.

The diagnostic file is a text file containing a list of diagnostic messages, each followed by a line
showing the number of the line in the source text causing the message. and a blank line. Ther
is no separation into pages and no headings. The file may be used by an interactive editor to
show the diagnosc messages together with the erroneous source txt.

SA.2.M Dapostic Messages

Thi Ada compiler issues diagnostic messages on the diagnostic file. Diagnostics other than
warnings also appear on the current output file. If a source text listing is required, the diagnostics
am also found embedded in the list file (see Section 5.3.1).

In a source listing. a diagnostic message is placed immediately after the source line causing the
message. Messages not related to any panicular line are placed at the top of the listing. Every
diagnostic message in the diagnostic file is followed by a line stating the line number of the
objectional line. The lines are ordered by increasing source line numbers. Line number 0 is
assigned to messages not related to any panicular line. On the current output file the messages
appear in the order in which they are generated by the compiler.

The diagnostic messages are classified according to their severity and the compiler action taken:

Warning: Reports a questionable constuct or an error that does not influence the meaning of the
program. Warnings do not hinder the generation of object code.

Example: A warning will be issued for constructs for which the compiler detects will
raise CONSTRAINT_ERROR at run time.

Error Reports an illegal construct in the source program. Compilation continues, but no object
code will be generated.

Examples: most syntax errors most static semantic errors.

Severe Reports an error which causes the compilation to be terminated immediately.
error. No object code is gmermed.

Example: A severe error message will be issued if a library unit mentioned by a
WITH clause is not present in the current progran library.

47

DACS-80x6 User's Guide
Ada Compiler

Fatal Reports an error in the compiler system itself. Compilation is terminateid immediately
error, and no object code is produced. The user may be able to circumvent a fatal error by

correcting the program or by replacing program constucts with alternatives. Please
inform DDC-. about the occunence of fatal errors.

The detection of more errors than allowed by the number specified by the ERRORLIMIT
parameter of the configuration file (see section 5.2.2) is considemd a severe emr.

S.3.=. Fornmt and Contort of Diagnosdc Mesegues

For certain syntactically incorrect consmacts. the diagnostic message consists of a pointer line and
a text line. In other cases a diagnostic message consists of a text line only.

The pointer line contains a poimer (a carat symbol A) to the offending symbol or to an illegal

character.

The text line contains the following informnation

"* the diagnostic message identification

"* the message code XY-Z where

X is the message number

Y is the severity code, a letter showing the severty of the error.

W: warning
E: error
S: severe error
F: fatal error

Z is an integer which, together with the message number X. uniquely identifies the compiler
location that generated the diagnostic message, Z is of importance mainly to the compiler
maintenance team - it does not contain information of interst to the compiler user.

The message code (with the exception of the severity code) will be suppmssed if the
parameter SUPPRESS_ERRORIO in the configuration file has the value TRUE (see
section 51..2).

* the message text; the text may include one context dependent field that contains the name of
the offending symbol; if the name of the offending symbol is longer than 16 characters only
the rim 16 charactemrs awe shown.

Examples of diagnostic messages:

... 18W-3: Warning: Exception CONSTRAI• T-ERROR will be rais3d here

'** 320£-2: Name OBJ does not denote a type

* 5* $35Z-0: Expression in return statemnt mi3ssing

48

DACS4-x06 User's Guide
Ada Compiler

"1508S-0: Specification for this package body not present in the library

S.4 The Program Ubrary

This section brIefly describes how the Ada compiler dcag the progam library. For a more
general descripton of the program library, the user is rfeared to Chaper 3.

The compiler is allowed to mad frmm all sublibrarles constituting the current program library, but
only the current sublibrary may be changed.

5.4.1 Correct Complatlons

In the following examples it is assumed that the compilation units awe correctly compiled, i.e.. that
no error am detected by the compiler.

Compilation of a library unit which is a declaration

If a declaraton unit of the same name exists in the current sublibray. it is deleted together with
its body unit and possible subunits. A new declaration unit is inserted in the sublibrary, together
with an empty body Unit.

Compilation of a hibrary unit which is a subprogram body

A subprogram body in a compilation unit is treated as a secondary unit if the current sublibrary
contains a subprogram declaration or a generic subprogram declaration of the same name and this
declaration unit is not invalid. In all other cases it will be treated as a library unit. i.e.:

"* when there is no library unit of that name

"* when there is an invalid declaration unit of that name

"* when there is a package declaration, generic package declaration, an instantiated package. cr
subprogram of that name

Compilation of a library unit which is an Instantiation

A possible existing declaration unit of that name in the current sublibrary is deleted together with
its body unit and possible subunits. A new declaration unit is insered.

Compika ion of a secondary unit which Is a Ubray unit body

The existing body is deleted from the sublibrary together with its possible submuks. A new body
unit is inserted.

49

DACS-80x86 User's Guide
Ada Compiler

Compilation or a secondary unit which is a subunit

If the subunit exists in dhe sublibrary it is deleted together with its possible subunits. A new
subunit is inseted.

5.4.2 Incorrect Compilations

If the compiler detects an em in a compilation unit. the program library will remain unchanged.

Note that if a file consists of several compilation units and an errur is detected in any of these
compilation units, the program library will not be updated for any of the compilation units.

53 Instantiation of Generic Units

This section describes the rules after which generic instmtiation is performed.

S.5.1 Order of Compilation

When instantiating a generic unit. it is required that the entire unit, including body and possible
subunits, be compiled before the first instantiation. This is in accordance with the ARM Chapter
10.3 (1).

5..2 Generic Formal Private Types

The present section describes the trement of a generic unit with a geneic formal private type.
where there is some construct in the generic unit that requires that the corresponding actual type
must be constrained if it is an army type or a type with discriminats. and there exists
instantations with such an unconstrained type (see ARM, Section 12.3.2(4)). This is considered
an illegal combination. In some cases the error is detected when the instantiation is compiled" in
other cases when a constraimrequiring construct of the generic unit is compiled:

1) If the instaniation appears in a later compilation unit than the first constraint-r•quiring
construct of the Vgneric unit, the enrr is associated with the instantiation which is rejected
by the compiler.

2) If the instantiation appears in the same compilation unit as the first conmtraint-requiring
construction of the generic unit. theme are two possibilities:

a) If there is a constraint-requiring consmrction of the generic unit after the instan•iation
an error message appears with the instantiation.

b) If the instantiation appears after all contint requiring constructs of the generic unit
in that compilation unit. an error message appears with the constraint-reuidring
construc but will refer to the iflega instantiation.

s0

DACS-WOx86 User's Guide
Ada Compiler

3) The instantiation appears in an earlier compilation unit than the first consta-int-requiring
construction of the generic unit, which in that case will appear in the generic body or a
subunit. If the instantiation has been accepted. the instantiation will correspond to the
generic declaration only, and not include the body. Nevertheless, if the generic unit and
the instantiation atm located in the same sublibrary, then the compiler will consider it an
error. An error message will be issued with the constraint-requiring construct and will refer
to the illegal instantiation. The unit containing the instantiation is not changed. however.
and will not be marked as invalid.

5.6 UninitialIzed Variables

Use of uninitialized variables is not flagged by the compiler. The effect of a program that refers
to the value of an uninitialized variable is undefined. A cross-reference listing may help to find
uninitialized variables.

5.7 Program Structure and Compilation Issues

The following limitations apply to the DACS-80x86 Ada Compiler Systems for the Real Address
Mode and 286 protected mode only:

The Ada compiler supports a "modified large" memory model for data references. The"modified large" memory model associates one data segment for each hierarchical sublibrary in
the Ada program library. All package data declared within a sublibrary is efficiently referenced
from Ada code compiled into the same sublibrary. A slight increase in code size results from
referencing package data compiled into a different hierarchical level. Inted's medium memory
model can thus be obtained by utilizing only one level of Ada program library, the root
sublibrary.

I The Ada compiler supports a large memory model for executable code. Although the size of
a single compilation unit is restricted to 32K words, the total size of the code portion of a
program is not restricted.

* The space available for the static data of a compilation unit is 64K - 20 bytes.

* The space available for the code generated for a compilation unit is limited to 32K words.

* Any single object cannot exceed 64K - 20 bytes.

The following limitations apply to all DACS-80x86 products:

"* Each source file can contain, at most, 32,767 lines of code.

"* The name of compilation units and identifiers may not exceed the number of characters given
in the INPUTLINELENGTH parameter of the configuration file.

"* An integer literal may not exceed the range of LONGINTEGER, a real literal may not exceed
the range of LONG_FLOAT.

51

DACS4SOaS User's Gulide
Ada Coupler

Maw imaber of famial pmrueter puiumuzd in a pnmcedw is Iiinutd to 127 per paxameter
specifiemionL Man, is nolmi ou n the imiber of procedwur specifications. For eumple. the

procodia:. OVKRW4XTHT (fl4TGZRO1,
I NTZGZRO 2

IIrriTKGZ6 6*: in INZMfZ);

exceeds the imit, bw the pmuedian cam be accomplislied with dr. *Alowing:

procodure UWIDILX)U? (INTSM301 in INUOZGA:
INTZGER.02 :in INTZGZR;

INTOZGZ166 :in INTZGZAI:

Muw above limumiins an diapoued by ftw compiler. In practice dheew hlmmmons an seldom
rewvicuve and may evily be circumvaud by using subunits, sepaat compilation, or creaftne w

Si ConiPiO CodeOpshaos

DDC-I's Ada compiler for the iAPX 80z86 manpsores funiy genemm compuLt efficient
code. This efficiency is acheved, in pems by the compiler's slowa optimizer. Opumizations
perfonned include:

"* Common sub-expuuulion elimination
" Elimination of rediazdant cohirauin ducrs
"* Eiminmton of mdiandamx elaborsdon chedc
"* Can$=m folding
"* Dead code elimination
" Oia reimr allcation
"* Selection of optima JUMP$
" Otoa nm-m check -tpreso

52

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

B-2

6 THE ADA LINKER

The DACS linker must be executed to create an executable program in the target environment.
Linking is a two stage process that includes an Ada link using the compilation units in the Ada
program library, and a target link to integrate the application code, rmn-time code. and any
additional configuration code developed by the user. The linker performs these two stages with a
single command. providing options for controlling both the Ada and target link processes.

This chapter describes the link process, except for those options that configure the Run-Time
System, which is described in detail in Chapter 7.

6.1 Invoking the Linker

Enter the following command at the shell to invoke the linker.

S adaJink (<option>) <unit-name>

where the options and parameters am:

Ada Linker Options

OPTION DESCRIPTION REFERENCE

-[noldebug Links an application for use with the 6.5.11
DACS-80x86 Symbolic Cross Debugger.

-nable task trace Enables trace when a task terminates in 6.5.28
unhandled exception.

-exception space Defines area for exception handling in task stuck. 6.5.29
-(nolextract Extracts Ada Object modules 6.5.14
-interruptentry table Range of interrupt entries. 6.5.27
-library The library used in the link. 6.5.7
-[no log Specifies creation of a log file. 6.5.9
-It-segment size Library task default segment size. 6.523
-it stack size Library task default stack size. 6.5.22
-mp segnent size Main program segment size. 6.5.25

.mp_stack s&ze Main program suack size. 6.524
-(no npz Use of the 80x87 numenc coprocessor. 6.5.16
-options Specifies target link options. 6.5.6
-priority Default task priority. 6.5.18
-reserv stack Size of reserve suck. 6.511
-rms Select Rate Monotonic Scheduling Run-Time 6.5.13

Kernel (optional).
-(noirootextract Using non-DDC-I units in the oot library. 6.5.10

53

DACS-80x86 User's Guide
The Ada Linker

[noirs Includes or excludes the mn-time system. 6.5.12
-marchlib Target libries or object modules to include 65.4

in target link.
-. electiveMak Removes uncalled code hom final program. 6.5.8
-sign.o. Produce sign on and sign off messages. 6.5.30
.sop.before..link Perfonrs Ada link only. 6.5.5
.tasks Maximum number of tasks or non-tasking 6.5.17

ap plica tio.
-Wskk_stor8Veue Tasks defult storae size. 6.5.26
-lemplaze Specifte templae file. 6.5.15
-tmer Timer resolution. 6.5.20
-time dlice Task time slicing. 6.5.19

All options may be abbeviated (characters omitted from the right) as long as no ambiguity arises.
Casing is significant for options but not for options keywords.

Note: Several simultaneous links of the same program should not be performed in the same
directory.

6.1.1 Diagnostic Messages

Diagnostic messages from the Ada Linker are output on the current output file and on the optional
log file. The messages are output in the order they are generated by the linker.

The linker may issue two kinds of diagnostic messages: warnings and severe errors.

A warning reports something which does not prevent a successful linking. but which might be an
error. A warning is issued if there is something wrong with the body unit of a program unit
which formally does not need a body unit. e.g. if the body unit is invalid or if there is no object
code container for the body unit. Warnings are only output on the log file, not on the current
output file. The linking summary on the log file will contain the total number of warnings issued,
even if the issued warnings have not been outpu.

A severe error message reports an error which prevents a successful linking. Any inconsistency
detected by the linker will, for instance, cause a severe enor message, e.g. if some required unit
does not exist in the library or if some time stamps do not agree. If the linker is used for
consequence examination, all inconsistencies introduced by the hpothedcal rncompilations are
reported as errors.

A unit not marked as invalid in the program library may be reported as being invalid by the
linker if there is something wrong with the unit itself or with some of the units it depends on.

6.2 The Linking Process

The linking process can be viewed as two consecutive pmcesses. Both are mtomatcally carried
out when issuing the link command adAJink.

54

DACS-804X6 User's Guide
The Ada Linker

The firs process constmites the Ada link process and the second constitutes the target link

process.

The Ada link process

"• reuieves the required Ada object modules from the program library.

"* determines an elaboration order for all Ada units,

"* creates a module containing the User Configurable Data (UCD) from the specified configuration
options to the linker and

"* creates a shell script that carries out the target link process (i.e.. dlnkbldx86). The locae/build
phase is an integral pan of the target link.

If the option -stop.before-lnk is NOT specified (default), the above script is executed
automatically. Otherwise the linking process is halted at this point.

When -stop-before-.ink is specified. all temporary files ate retrieved for inspection or
modification. The target linker is invoked by executing the shell script.

6.2.1 Temporary Flies

The following temporary files are in use during the link phase:

<amain.pmpgram>_link.com The shell script which invokes the target linker.

<mainprogramn>_elabcode.o The object code for the calling sequence of the elaboration
code.

<main.pn:gram>_ucd.o The object code generated from the RTS configuration
options (see Section 7.2).

<main..promgram>_uxxxxx.o The Ada object modules which have been extracted from the
program library. xxxxx is the unit number of the Ada unit.

55

DAC:S.OxS6 User's Guide
Ma Ada Linker

Ce-C

am"

-- -- --- ---- ---- --- ---- ---- --

- Nan jraM

Figure 6-3. The Linking Process

The following components make up fth run-time system:

1) User configurable portion of the RTS

a) User configurable data (UCD) and
b) User configurable code (UCC)

2) Permanent pert of the RTS

a) Non-tasking RTS (ri Ilib) or
b) Tasking RTS (rl2Jib)
c) RMS Task~ing RTS (rl3Jib)

The User Configurable Code defined by the environmenul variable ada-uce lib is included in the
link. If no tasking has been specified. tUe the RTS non-tasking library (ri iLIb) will be included.
If tasking has been specified, the support for tasking will be included (rlZlib or, when -rvas.
rl3.lib).

56

DACS-S0x36 User's Guide
The Ada Liker

The output of the linker step is an absolute executable object tile with the extension ".daz and
a map file with the extension ".mpS".

6.=.Z Environmental Variables

When a link is executed, a number of files are referred to and most ae accessed through
environmental variables. The locarudbuild phase uses the control file Sada.ucc-dir/config.bld&ddci,
the remaining variables ame:

VARIABLE PURPOSE

ada-syszem-library Identifies the root library where the system compilation units reside.

ada_library Identifies the default library used by all DACS-80x86 tools. It is the
lowest level sublibrary in the program library hierarchy.

ada_rootlib Identifies the OMF library where the system library units have been
extracted from the system library. By having a separate Library for the
root compilation units, the link process is much faster than otherwise
having to extract each unit from the system library for each link.

adajrl lJib Identifies the OMF library for the Permanent Part of the non-tasking
vernsion of the Run-Timme System.

ada_rl2_1ib Identifies the OMF library for the Permanent Part of the tasking verion
of the Run-Tune System.

ada_rl3_jib Identifies the OMP library for the Permanent Part of the optional Rate
Monotonic scheduling Run-Time System.

adaucc_lib Identifies the OMF library for the User Configurable Code portion of
the Run-Time System.

ada-template Identifies the template file for the Linker.

ada-ucc.dir Identifies the directory of the current UCC.

With each of these environmental variables, the name will differ depending on how the system
was installed (ada86, ada186 etc). Throughout this document ada is assumed. For example, the
environmental variables for the root library for the 80186 vernon of the compiler would be
adaIS6 root lib, and the RTS UCC library enrvirnmental variables for the 8086 vernon would
be ada86 uc& fib.

57

DACS-80x86 User's Guide
The Ada Linker

6.3 Run-Time System Overview

The Run-Tune System for DACS-80x86 is defined as all code and damt. other din the code uld
data produced by the code generator, required to make an embedded system appliMon opeme
propedy on a specific hardware system.

In general, there are two major components that make up the Run-Time System.

1) Code and data assumed to exist by the code generator. This is hardware independent ad
known as the RTS Permanent Pan.

2) Code and data tailoring the application with Poppect to te characteristics of the hardware
and other requirements of the embedded systems developer. This code is called the RTS
User Configurable Pan.

Both of the above components consist of modular OMF libraries. The modules are only included
in the user program if they are needed. i.e.. if a call or reference is made to the module. This
ensures a compact RTS (typical applications are 4 KB to 10 KB).

The RTS Permanent Pan does not make any assumptions about the hardware other than an 80x86
and some amount of memory available.

There are several versions of the RTS User Configurable Pan available for diffemr development
targets. Also. the source code is provided to allow the modification of the User Configurable
Code (UCC) to operate on other targets. Refer to the RTS Configuration Guide for complete
information on modifying the UCC.

DDC-I has carefully analyzed and selected the parts of the Rim-Time System that must be
configurable for hardware independence, freeing the user from major rewrites whenever the
Run-Time System is retargeted while, still allowing for almost unlimited adaptability.

Four important features of the rnm-time system are:

"* It is small

"* It is completely ROMable

"• It is configurable

"• It is efficient

Conceptually, an Ada run-time system can be viewed as consisting of the following components:

"• Executive. i.e.. the stan-up mechanism

"* Storage Management

"* Tasking Management

"• Input/Output

"* Exception Handling

58

DACS-30x86 User's Guide
The Ada Linker

"* Run-Time Library Routines

"* Package CALENDAR support mutnes

The nm-uime system (RTS) can be configured by de user through Ada Linker command options.
The Ada Linker will generate appmpriate data smuctures to represent the configured characteristics
(UCD).

Two versions of the RTS are supplied. ae including tasking and one excluding tasking. The
linker selects the RTS version including tasking only if the option -tasks is piesent or -tasks n
is presen mad n > 0. Otherwise. the linker selects the RTS version excluding tkin

6.4 Linker Elaboration Order

The elaboration order is primarily given by the unit depenadencs, but this leaves some freedom
here and ther to arbitrarily choose between two or more alternatives. This arbitrary is in the
DACS-8Ox86 linker controlled by the speil•ng of the involved library units, in order for "free"
units to become alphabetically sorted.

Recompiling from scrach, an entire system may thus affect the allocation of unit numbers, but the
elaboration order remains the same.

It is also attempted to elaborate "body after body", so that a body having a with to a specification,
will be attempted elaborated after the body of this specification.

Also elaboration of units from different library levels is attempted to complete elaboration of a
father-levei prior to the son-level.

This strategy should in many cases reduce the need for resetting pragma ELABORATE.

6-S Ada Linker Options

This section describes in detail the Ada linker option and parumetes

6.5.1 The Parameter 4unit-namme

-tanit-namneo

The <uniLtnmne> must be a library unit in the current program library, but not necessuaily of the
current sublibrary.

Note that a main program must be a procedure without parameters, and that qnit-name> is the
identifier of the procedure, not a file specification. The main procedure is not checked for
parameters. but the execution of a progpm with a main procedure with puarmeters is undefined.

59

DACS-I0xM Usr's Guide
TMW Ada ULAv

U.5.2 The Paramew r wesad@m4psc3

The symax of -a -mp2la m- b is:

cuus~c•-ody~p edflatium]...

Tis paraeter tes the linker to pefom a conistency check of the mcr p"ram using the
hypothetical recomplt of all umns designated in the <recompitian-spe>. The link process
in this instance is not acamly permed.

The <uniLspec> is a list of wilt-names (wildcads are allowed). sepred by comma (,) or plus
(÷). Each unit-naan should include an option to indicae if the body or specificaton is to be
hypothetically compiled (-sp is the default).

6.53 Required Reompilatiom

If the consistency check found that recompilations are required. a list of reuired recompilations
is written to the cumen output file or to a text file if the 4og option is specified (the name of
the text file is indicated in the log file, line 8). The list will include any inconsistencies detected
in the library and Prco pilauions required by the hypothetical recompilations specifled with the
options -declation and -body.

The enties in the list contain:

1) Tha eit name.

2) Indication of what type of unit (declaration unit. body unit, or subunit).

3) If the unit is specified as recompiled with the -declaratdon or -body option, it is marked
with "-R-".

4) The environmental variable of the sublibrary containing the unit.

In the rcompilation list the units an listed in a recommended recompilation order, consistent with
the dependencies among the units.

6.5.4 -searchlib

-amrchlib Uflkename3 {(,Ae.nawm)

The -mrchdlb option diecs the Ada Linker to seamch the specified 80x86 targe librarms for
object modules in onft to resolve symbol referlencs. The 80x86 target libraries for object files
will be seached befo the DACS Ron-Trme Sys=em (RTS) library normaly seatches for nm-tme
routines; in this way one cau replace the smadud DACS RTS routines with custom muines.

Th .mrchli~b option is also intended to specify libraries of modules referenced from Ada via
prama OCTERFACE.

60

DACS-80xft User's Guide
The Ada Linker

$ ada-ink -mrchlib Interhce ub p

Links the subprogram p. resolving referenced symbols first with the target library imerfacejlib
and then with tie standard RTS target library.

6.5J -stop-_berlnk

.*op befbre link

The -stopbefore link option allows the user to introduce assemblers and linkers from third
parties or to otherwse configure the link to suit the application. The link is balled with die
following conditions:

"* The user configurable data file. ,maain>_ucd.o. is produced with the defaul or user specified
linker option values included.

"• The elaboration code is contained in the <main>_elabcode.o file.

"• The shell script file that contains the link command is present and has not been executed. The
file's name is <main>.link.com.

"* The temporary Ada object rile(s) used by the target linker ae produced. These objects are
linked and deleted when <main>_linkcom is executed.

"* With -selective link the object files comprise all Ada units including those from the root
library. At this point it is possible to disassemble the "cut" object files using -object with the
disassembler.

To complete the link, the <main>_link.com script must be executed. To use third party tools, this
file may have to be modified.

6.5.6 -options

-options <parameter-

-options allow the user to pass options onto the target linker.

61

DACS-80z86 User's Guide
Run-Time System

6.5.7 -library

-Ilbrary -cftl,-nmm
-lbrary Sad.Jbrar7 (default)

The 4-ibrry option specifies the curim sublibrary, from which the linking of the main unit will
take place. If this option is not specified. the sublibrary specified by the environmental variable
adalibrar, is used.

6.5J. -selective link

-selectivelink

This extracts all required object modules from the Ada library (including the root library) and cuts
out exactly those parts that am actually called, in order to make the resulting target program
considerably smaller. If a program uses e.g. PUT-LINE as the only routine from TEXTIO, the
contribytion from the TEXTIO object module will only contain PUTtLINE (and whatever that
needs). Note that disassemblies of units used in a selective link normally will not match what is
linked, because of the cutting. Such disassemblies may though be obtained by disassembling
directly those units that made up the selective link. by stopping the linking before the target link
phase (-stopbeforelink), making disassemblies using -object and then resuming the link.

Note also that unused constants and permanent variables mu not removed.

Only "level IV subprograms may be removed. Nested subprograms (that ame not called) are to be
removed during compilation using the -optifize option. Nested subprograms are only removed.
if the routine in which the nesting occurs is removed.

6.5.9 -[no~log

-log [flle-spec:1
-nolog (default)

The option specifies if a log dfie will be produced from the from end linker. As default, no log
f'le is produced. If <f'le-spec> is not entered with -log the default file name for the log file will
be link.log in the current directory.

The log file contains extensive information on the results of the link. The file includes:

"* An elaboration order list with an entry for each unit included, showing the order in which the
units will be elaborated. For each unit. the unit type, the time stamp, and the dependencies me
shown. Furthermore, any elaboration inconsistencies will be reported.

"* A linking summary with the following information:

"* Parameters and active opdons.

"* The full name of the program library (the currum sublibrary and its ancestor sublibraries).

62

DACS-80x6 User's Guide
The Ada Linker

"* The number of each type of diagnotic message.

"* A teminAton message, Sating if the linking was terminated successfully or unsuccessfully or
if a consequnce examinaton was renninaed.

"* Diagnostic messages and warnings am written on the log file.

If recompilanons am required (as a mrult of the consistency check) a text Me is produced
containing excerpts of the log file. The name of this text file is written in the log file, line 8.

The log file consists of:

"* Header consisting of the linker name, the linker vCesion number, and the link time.

"* The elaboration order of the compilation units. The units ae displayed in the order elaborated
with the unit number, compilation time, unit type, dependencies, and any linking errors.

"* If recompilations are required, the units that must be recompiled are listed along with its unit
type and sublibrary level

"* The linking summary that includes the main unit name, the program library, any recompilations
that are required, and if any errors or warnings occurred.

6.S.10 -[nojroot-extract

-root-extract
-noroot extract (default)

The units contained in the Ada system library supplied by DDC-I have been extracted and inserted
into the Sada_mot_lib OMF Library, thus eliminating extractions from the system library at link
time and improving link performance.

The user should normally not modify or compile into the Ada system library supplied by DDC-I.
If however, a unit is compiled into the Ada system library, the Sadaroot_lib will no longer
match the Ada system library and -root extract must be specified in order to link from the Ada
system library.

6.5.11 -[noldebug

-debug
-nodebug (default)

The -debug option specifies that debug information is generated. The debug information is
required to enable symbolic debugging. If -nodebug is specified. the Ada linker will skip the
generation of debug information, thus saving link time, and will not insert the debug information

63

DACS-80x6 User's Guide
The Ada Linker

into the chosen sublibrary. thus saving disk space. Note that any unit which should be
symbolically debuggeld with the DDC-I Ada Symbolic Cros Debugger must also be compiled with
the -debug option.

6.3.12 -(nojrts

.rts (default)

.noms

The -its option directs the Ada Linker to include the appropriate Run-Time System (RTS) in the
link. -norts directs the Ada Linker to exclude the RTS in the link.

The ability to exclude the Run-Time System from the link allows the user to do an additional link
with a private copy of a custom RTS. The Ada Linker may repon unresolved references to RTS
routines, but will still produce a relocatable object file.

6.5.13 -rms

-riml

This option selects the Rate Monotonic Scheduling Tasking Kernel (if tasking is selected). The
default is to use the Standard Tasking Kernel. This feature is supplied as an option.

6.S.14 -fnolextract

-extract (default)
-noextract

This option to the linker allows the user to specify dta program unit objects should not be
extracted from the Ada program library. This option would be used if the user knows that many
objects have not changed since the last link and does not want the linker to waste time extracting
them.

To use this feature, the user should modify the template to not delete unit object files after a
target link is performed. This way the object files remain in the cunent directory (or whereever
the user decides to put them). On subsequent links the user can extract object modules of
modified units from the Ada library using the standalone DACS extract tool. A new target link
can then be performed using a combination of newly extracted objects and the object files from
previous links that have gone unchanged. This could significantly improve linker speed when
linking programs that sham common and rarely modified libraries and when relinking progrmns
that have had only a few units modified.

64

DACS-80x86 User's Guide
The Ada Linker

6.5.15 -template

-template <fle-name>
*template Sada..template (default)

The template file is known to the linker via the environmental variable adatemplate. DDC-J
supplies a default template file as pan of the standard release system. Please refer to appendix H
for detailed infonnatiom

6.S.16 -npx

-pia (default)
-Uolmpx

The -npx option specifies that the 80x87 (8087. 8287. or 80387) numeric coprocessor is used
by the Ada progmamn. When -apx is specified, the 80x87 is initialized by the task initialization
routine, the floating point stack is reset during exception conditions, and the 80x87 context is
saved during a task switch.

Configurable Data

A 16 bit boolean constant is generated by the Ada Linker

_C NIX USED

- 0 -80x&7isnotused
a 1 -*Sx87isused

6.5.17 -tasks

-tasks In)
(default is no tasking)

This option specifies the maximum number of tasks allowed by the RTS. If specified. n must be
greater than zero. If -tasks is specified without a value for n. n defaults to 10. If -tasks is not
specified, the RTS used will not include suppor for masking. If -tasks is specified, the RTS used
will include support for taking.

Ada Interrutl tasks identified with pramsa DVJf •1UPT_.HANDLE need not be included in die
count of maximum number of asks. The main progmam must be coumed in the maximum number
of tasks. Note tha the main program, which may implicitly be conidered a task. will not run
under control of the tasking kernel when -motsks is specified See so -rmn option.

Configurable Data

For -tasks. the linker generates the foWowing configurable data:

65

DACS-80x86 User's Guide
The Ada Linker

it -upa is
active. U
m"Wric Go-

S adas ink -tasks 3 p

• Link the piogiwn P. which has at most 3 tasks, including the main program.

6-5.18 -priority

-priority n
-priority iS (default)

The -priority option specifies the default priority for task execution. The main program will run
at this pinonty, as weU as tasks which have had no priority level defined via pragina PRIORTY.
The range of priorites is fhm 0 to 31.

Priorities can be set on a per task basis dynamically at nim time. See section E.1 (Package
RTSEnuyPoins) for mom details.

Configurable Data

The Ada Linker generates the following constant data:

_CDFZORM OTTn

Example:

S ada-ish -tasks -priority 8 p

Link the suibprogruu P which has die main prop. and tasks naming at
default prioit*S

66

DACS-80x86 User's Guide
The Ada Linker

6-5.19 .timeslice

-time slice [r] (default no time slicing is active)

The -time slice options specifies whether or not time slicing will be used for tasks. If specified.
R is a decimal number of seconds representing the default time slice to be used. If R is not
specified, the default time slice will be 1/32 of a second. R must be in the range Duradion'Small
< R : 2.0 and must be greater than or equal to the -timer linker option value. Time slicing only
applies to tasks running at equal priority. Because the RTS is a preemptive priority scheduler, the
highest priority task will always run before any lower priority task. Only when two or more tasks
are running at the same priority is time slicing applied to each task.

Time slicing can be specified on a per task basis dynamically at run-time. See Section E.1
(Package RTSEntryPoinus) for more details.

Time slicing is not applicable unless tasking is being used. This means that the -tasks option
must be used for -time slice to be effective.

Configurable Data

The Ada Linker generates the following data:

C.DI1ýSL1CEOSZW

- 0 - So time s•icing
0 1 - Time slicing

C 3T.SLCZ absZZolute Inta er

0 representing the number Y that satisfies Y DURATION'SMALL = R

Example:

S ada.link -time slike 0.125 -tasks p

* Specifies tasks of equal priority to be time sliced each eighth of a second.

6.5.20 -timer

.timer R
-timer 0.001 (default)

The -timer option specifies the resolution of calls to the Run-Time System routine TIMER (see
the Run-Time System Configuration Guide for DACS-80x86 for more information). The number,
R, specifies a decimal number of seconds which have elapsed for every call to TIMER. The
default TIMER resolution is one millisecond. R must be in the range DURATION'SMALL< R
< 2.

67

DACS-80x86 User's Guide
The Ada Linker

Configurable Data

The Ada Linker generates the following 16 bit constant:

representing the number Y that satisfies Y * DURATION'SMALLaR

6.5.21 -reserestack

-rserve stack [n]

The -reserve stack option designates how many words ame reserved on each task stack. This
space is resered for use by the RTS, which does no checking for stack overflow. This reserved
space also allows the RTS to function in situations such as handling a storage error exception
arising. from stack overflow.

The -reserve stack option also reserves pan of the main program stack size, specified by the
linker option -mp_stacksize.

Configurable Data

The Ada Linker generates the following integer constant

_CqRzZWvi;STACK =t

Examples:

$ ada-link -reserve stack 200 -tasks p

• Reserve 200 words from each stack for use by the RTS.

6.S.22 -IlLstacksize

-ft stak size n
-It.stack.size 500(default)

The -it stack size option designates the library task defaut sme in words. A library task is
formed when a task object is declared at the outermost level of a package. Library tasks am
created and activated during the initial main program elaboration. (See the Ada Reference Manual
for more details).

68

DACS-80x86 User's Guide
The Ada Linker

For each library task. the representaion spec:

FOR Task-objec'STORAGE-SIZE USE N;

can be used to specify the library task stack size. However, if the rpresentation spec is not used.
the default library task size specified by 4t stack size will be used.

For efficiency masons, all tasks created within library tasks will have stacks allocated within the
same segment as the library task stack. Normally, die segment which contains the library task
stack is allocated just large enough to hold the default library task stack. Therefor. one must use
the option -It-_ackoption or the pragma LT-SEGMENT.SIZE to reserve more space within the
segment that may be used for nested tasks' stacks. (See the implementation dependent pagma
LTSEGMENTSIZE in Section F.1 for morm information).

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase of the link. and the maximum segment size (64K for all except the 386/486
protected mode, which is 4 GB).

Configurable Data

The Ada Linker generates the following integer constant:

_CLsT cx]szzg I ,NTEM

Example:

$ adaJink -It sack size 2048 -tasks p

0 Link the subprogram P using a 2K words default library stack size.

6.5.23 -It.stack.size

-Itsegmentsize n
-it_segment size (ILtstack.size + 20 + exceptionrstack-space) (default)

This parameter defines in words the size of a library task segment. The library task segment
contains the task stack and the stacks of all its nested tasks.

The default value is only large enough to hold one default task stack. If 4t-sta&k.size is used and
specifies a value other than the default value, .Itsegnmentsize should also be specified to be the
size of <task_stack-size> +

<total of_nested.taskssizes> +
<20_wordsoverthead> +
exception-stackspace.

Note that the task stack size specified by the 'STORAGE-size can be representation spec or by
the option -It-stack.size.

Dynamically allocated tasks receive their own segment equal in size to the mp-segment.size.

69

DACS-8Ox86 User's Guide
The Ada Linker

The range of this parumeter is limited by physical memory sie task stack size allocated during
the build phase, and the maximum segment size (64K for all except the 3M/486 protected mode,
which is 4 GB).

Configurable Data

The Ada Linker generates the following data strctur:

_;_LTI.SzaNTSrzZ I I

Example:

S adalink -Itsegmentsize 2048 -tasks p

Link the program P using a library task segmem size of 2K words.

6.5.24 -mpjstack-size

.mp stack size n
-mp..stack..size S800 (default)

The -ap_stacksize option specifies the main program stack size in words.

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase (in tasking programs only), the maximum segment size (64K for all except the
386/486 protected mode, which is 4 GB), and the size of mp-segmentsize.

Configurable Data

The Ada Linker generates the following data structurs for nontasking programs:

0CVýSZAcK SIZEt-I

Ivstrao I

_PWSTAOcSTAatT adihst&r.I

For tasking programs. the Ada Linker generates the same structures but limits the sze to 1024
words. This stack is only used for the execution of the system startup code and elaboration.
At main program activation, a segment for the main program equal to the size specified by -
.mpsegntslem will be allocated from the dynamic memory pool and a stack for the main
program equal to the siz specified by .nmpstack size will be allocated from the memory
pool.

70

DACS-804x6 User's Guide
The Ada Linkr

Example:

S adaslink -mpstack-size 1000 p

- Link the subprogram P with a stack of 1000 words.

6.S25 -mp-segmentize

-.mp agient szOe n
-mp-segnuLntze 8100 (Default)

The -mpsegment sie option specifies the size, in words, of the segment in which the main
program stack is allocated. The default setting can be calculated from the formula:

mp...segmentsize - mpjstack-size +
overhead + (tasks - I)
(overhead + ask_storagesize)

Normally. the main program segment size can be set to the size of the main program stack
However, when the main program contains nested tasks, the stacks for the nested tasks will be
allocated from the data segment which contains the main program stack. Therefom, when the
main program contains nested tasks, the main program stack segment must be extended via the
-mp-segment size option.

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase (in tasking programs only), and the maximum segment size (64K for all except
the 386/486 protected mode, which is 4 GB).

Note: Dynamically allocated tasks receive their own segment equal in size to mp_segment-size.

Configurable Data

The Ada Linker allocates the _CDMPSTACK (see the -.rp stack size option) within a data
segment called _CD_MP_STACKSEGMENT:

T T !3wsZ~xs IM 3STAM KI unSz

Example:

S adajink -tasks -imp sqpnmentsie 32000 provpamus

Links the subprogram PROGRAM..A, which contains tasks nested in the main program
allocating 32,000 words for the main program stack segment.

71

DACS-80x86 User's Guide
The Ada Linker

6.S.26 4ask.storamp..s/ze

.tasktora gesle a
taskstoragsze 1024 (default)

This option sets the default storage size in words for stacks of tasks that awe not library tasks.
This value can be overridden with a represenmauin clause.

The range is limited by the size of the It.segne..size (if it is a subtask to a library task), or by
mp.segment-size (if it is a subtask to the main prognam).

Configurable Data

The Ada Linker generates the following daia smacuuwe:

cCLDThSXýSTO"ýSAEZSZ I

6.5.27 -interrupt-entry table

-interrumt eniy table LH

The -interrupt entrytable option specifies the range of interrupt vector numbers used by the
Ada program in interrupt tasks.

The number. L. specifies the lowest numbered intrrupt handler. The number. H. specifies the
highest numbered interrupt handler. The range for low and high interupts is 0 to 255.

Configurable Data

If -interruptentry table is specified, the Ada Linker will generate the following data stucture:

_p=~i_nn=R•_n I C-M-+l,- I
L;ýzzOVZNTZPAO? (ii+)*

I Words reservd I
J for ZInte.upc
IVector

If the user ever detects unrsolved references to the symbols:

_CDLOWDNTERRUf
_CD_HIHPNTERRUP
_CDN'ERRUPTVECTOR

72

DACS-4Ox6 User's Guide
The Ada Uifer

the Ada pOP cousins standard 'ieuPir sks for which the R73 requires the above dam

smtrcre. You must mlnk the Ada pmgi specifying the -nwrruO_=U7taWl option.

Example:

S adaJnnk -tasks -Interruptl audyt e 5.20 p

SLinks the subprogram P, which has standard Ada intemuipi coa numbered 5
through 20.

6.5.28 .[no4enble.tsree

-menable task trace

This option instructs die exception handler d produce a stack trace when a task terminaes because
of an unhandled exception.

Configurable Data

- 0 - task trace di•le.aLd
- I - task trace enabled

6.5.29 -exceptiospace

-exception.space n
-exception-space OaOh (default)

Each sack will have set its top area aside for excepton space. When an excepion occurs the
exception handler may switch stack to this area to avoid accidental overwitre below the stack
bottom (which may lead to protection exceptions) if the size of tie remaining pan of the stack
is smaller than the N value. Specifying a value .0 will never cause sack swiching. Otherwise an
N value below the default value is no recommended.

Configurable Data

cD.VCCDzMGkSSAex...SPACZ.S~zzZ ~

Note tha this value is added to al requests for msk stack space. thus requiring an icee in the
requirements of die appropriate segmeut's size

73

DACS-80I•6 User's Guide
The Ada Linker

6.S .0 4p"n

When dtis opton is specified the linker will gewraue code t output a sign on message. before
the Ada elaboraion is initiated and a sign off message when the target propogn has terminated
successuy. If the progrin trminates with a uncaught excepuion. the sign off message is not

Tbe sign on message comisu of:

START [<sumnp <program nme>

and the sip off message

STOP [<ring>J <program name>

The <suinp> may comain spaces, e.&

-sin-on "Test 3" (remember the quotes).

This facility is very useful to separate output from several target programs run after each other,
and to verify that a program that produces little or no output has actually been loaded and run
successfully.

74

APPENDIX C

APPENDIX F rF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, re2erences in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type SHORTINTEGER is range -32_768 .. 32_767;

type INTEGER is range -2147_483_648 .. 2_147_483_647;

type LONGINTEGER is
range -16#80000000_00000000# .. 16#7FFFFFFFFFFFFFFF#;

type FLOAT is digits 6
range -16#0.FFFFFF#E32 .. 16#0.FFFFFF#E32;

type LONG FLOAT is digits 15

range -16#0.FFFFFFFF_FFFF_F8#E256 .. 16#0.FFFFFFFF_FFFF_F8#E256;

type DURATION is delta 2#1.0#E-14 range -131_072.0 .. 131_071.0;

end STANDARD;

C-I

APPENDIX F - IMPLEMENTATION-DEPENDENT CHARACTERISTICS

This appendix describes the implementation-dependent characteristics of DACS-80X96Tm as nreuired
in Appendix F of the Ada Reference Manual (ANSIVMIL-STD-1815A).

F.I implemmnation-Dependent Pragnms

This section describes all implementation defined pragmuas.

F.A.A Pragma INTERFACE.SPELLING

This pragma allows an Ada program to call a non-Ada program whose name contains characters
that are invalid in Ada subprogram identifiers. This pragma mum be used in conjunction with
pragma INTERFACE, i.e., pragma INTERFACE must be specified for the Ada subprogram name
prior to using pragmna INTERFACESPELLING.

The pragma has the format:

pragma INTERFACESPELLING (subprogram name, suing literal);

where the subprogram name is that of one previously given in pragma INTERFACE and the string
literal is the exact spelling of the interfaced subprogram in its native language. This pragma is
only required when the subprogram name contains invalid characters for Ada identifiers.

Example:

function RTSGetDataSegewnt return Integer;

prag•ua INTERFACE (ASM86, RTS GetDataSegment);
pragma INTERFACESPELLING (RTS GetDataSegment, -R1SMGS?Ge"tDataSegment-"):

The suing literal may be appended 'NEAR (or TFAR) to specify a particular method of call. The
default is 'FAR. This suffix should only be used. when the called routines require a near call
(writing 'FAR is however harmless). If 'NEAR is added, the routine must be in the same segment
as the caller.

F.1.2 Pragma LT..SEGMENT..SIZE

This pragma sets the size of a library task stak segmen
The pragma has the format:

pragma LTSEGMENTSIZE CT, N);

where T denotes either a task object or task type aWd N designates the size of the library task

193

DACS4-x86 User's Guide
ImpemmazonDependent Chaacteristics

stack segment in words.

The library task's stack segment defaults to the size of the library task stack. The size of the
library task stack is normally specified via the representation clause (note t T must be a task
type)

for T'STORAGESZE use N;

The size of the library task stack segment determines how many tasks can be created which are
nested within the library task. All tasks created within a library task will have their stacks
allocated from the same segment as the library task stack. Thus. pragma LTSEGMENTSIZE
must be specified to reserve space within the library task sack segment so that nested tasks'
stacks may be allocated (see section 7.1).

The following restrictions are places on the use of LTSEGMOENT.•S1E:

1) It must be used only for library tasks.

2) It must be placed immediately after the task object or type name declaration.

3) The library task stack segment size (N) must be greater than or equal to the library task
stack size.

F.I3 Pragm EXTERNAL-NAME

F.I.3.1 Function

The pragma EXTERNAL-NAME is designed to make permanent Ada objects and subprograms
externally available using names supplied by the user.

F.I.3.2 Format

The format of the pragma is:

pragma EXTERNAL=NAME(<ada..emity>,<extenal name>)

where <aida_entity> should be the name of:

"• a permanent object, i.e. an object placed in the permanent pool of the compilation unit - such
objects originate from package specifications and bodies only.

"* a constant object. i.e. an object placed in the constant pool of the compilation unit - please
note that scalar constants are embedded in the code, and composite constants are not always
placed in the constant pool, because the constant is not considered constant by the compiler.

194

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

a subprogram name. i.e. a name of a subprogram defined in this compilation unit - please
notice that separate subprogram specifications cannot be used, the code for the subprogram
must be present in the compilation unit code, and where the <external name> is a suing
specifying the external name associated the <adaa_etity>. The <external names> should be
unique. Specifying identcal spellings for different <ada-entuties> will generate errors at compile
and/or link time, and the responsibility for this is left to the user. Also the user should avoid
spellings similar to the spellings generated by the compiler, e.g. E.xxxxx..yyyyy. P-xxxxx,
C-xxxxx and other internal identfications. The target debug type information associated with
such external names is the null type.

F.13.3 Restrictions

Objects that are local variables to subprograms or blocks cannot have external names associated.
The entity being made external ("public") must be defined in the compilation unit itself. Attempts
to name entities from other compilation units will be rejected with a warning.

When an entity is an object the value associated with the symbol will be the relocatable address
of the first byte assigned to the object.

F.I.3.4 Example

Consider the following package body fragment:

package body example is

subtype stringlO is string(l..10);

type s is
record

len integer;
val stringl0;

end record;

global!s : s;
consns : constant stringlO :- "1234567890";

pragma EXTERNAL NAME(globals, "GLOBAL_S_OBJECT");
pragma EXTERNAL &AME(const s, "CONSTS");

procedure handle(...) is

end handle;

pragma EXTERNAL NAME (handle, "HANDLE PROC");

end example;

The objects GLOBALS and CONST_S will have associated the names "GLOBAL_SOBJEC"
and "CONSTS". The procedure HANDLE is now also known as "HANDLE_PROC". It is

195

DACS-80x86 User's Guide
ImDependen Characteristics

allowable to assign more than one external name t an Ada entity.

F.I.3. Object Layouts

Scalar objects are laid out as described in Chapter 9. For arrays the object is described by the
address of the first element: the army constraint(s) are NOT passed, and therefore it is
recommended only to use arrays with known constraints. Non- discriminated records take a
consecutive number of bytes, whereas discriminated records may contain pointers to the heap. Such
complex objects should be made externy visible, only if the user has thorough knowledge about
the layout.

F.1.3.6 Parameter Passing

The following section describes briefly the fimdamentals regarding parameter passing in connection
with Ada subprograms. For more detail, refer to Chapter 9.

Scalar objects are always passed by value. For OUT or IN OUT scalars, code is generated to
move the modified scalar to its destination. In this case the stack space for parameters is not
removed by the procedure itself, but by the caller.

Composite objects are passed by reference. Records are passed via the address of the first byte
of the record. Constrained arrays are passed via the address of the fim byte (plus a bitoffset when
a packed array). Unconstrained arrays are passed as constrained arrays plus a pointer to the
constraints for each index in the array. These constraints consist of lower and upper bounds, plus
the size in words or bits of each element depending if the value is positive or negative
respectively. The user should study an appropriate disassembler listing to thoroughly understand
the compiler calling conventions.

A function (which can only have IN parameters) returns its result in register(s). Scalar results are
registers/float registers only: composite results leave an address in some registers and the rest, if
any, are placed on the stack top. The stack still contains the parameters in this case (since the
function result is likely to be on the stack), so the caller must restore the stack pointer to a
suitable value, when the function call is dealt with. Again. disassemblies may guide the user to
see how a particular function call is to be handled.

F.I.4 Pragma INTERRUPT-HANDLER

This pragma will cause the compiler to generate fast interrupt handler entries instead of the normal
task calls for the entries in the task in which it is specified. It has the format:

pragma INTERRUPT.HANDLER;

The pragma must appear as the fim thing in the specification of the task object. The task must
be specified in a package and not a procedure. See Section F.6.2.3 for more details and restrictions
on specifying address clauses for task entries.

196

DACS-80x86 User's Guide
Implememation-Depende Charanctristcs

F.LJ Pragon MONrrORTASK

F.IJ.1 Function

The pragma MONITOR-TASK is used to specify that a task with a certain structure can be
handled in a special way by the Run-Time System. enabling a very efficient context switch
0operaon.

F.1.5.2 Format

The format of the pragma is

pragma MONITORJASK;

The pragma must be given in a task specification before any entry declarations.

F.1.5.3 Restrictions

The following restrictions apply on tasks containing a pragma MONITORTASK:

"• Only single anonymous tasks can be *monitor tasks".

"* Enties in "monitor tasks" must be single entries (i.e. not family entries).

* The task and entry attibutes an: not allowed for "monitor tasks" and "monitor tasic" entres.

"* The <declarative part> shou7ld only contain declaration of objects; no types or nested sturctures
must be used.

" The strncture of the task body must be one of the foll., ,3:

task body I_TAmc is
<ldeclarative part>

begin
4statement liJst>
loop

select
accept D=iTY l<psamter:lisat> [do
end);

or
accept r•R 2<parameter Utsr tindo

<state•men•..Z Jst;

end);

teosinatt
end select;

end loop;
end;

where each entry declared in the specification must be accepted unconditionally exactly once.

197

DACS-80x86 User's Guide
lmplementation-Dependent Characteristics

2.
task body MY0. TAWS is

<declarative part>
begin

<Stateftent]. s,$t.

loop
accept MO_-ZlTRY<Pparaneter llst> (do

<statement -lst>
end].

end loop;
and;

where the task only has one entry.

In both cases the declarative pans. the statement lists and the parameter lists may be empty.
The statement list can be arbitrarily complex, but no nested select or accept statements are
ailowed.

No exception handler in the monitor task body can be given.

The user must guarantee that no exceptions are propagated out of the accepts.

F.1.l.4 Example

The following tasks can be defined
task L:ST HANIDLR is

praqma C•ONITOR -TASK;
entry INSER'T(EWEM:£L, TYPE);
entry RD4OVE('LDh:out ZLWD TYPE);
entry ZS P9sIENT (EL,: Z.LITYIPE;

NCSZLT:out BOOLEAN);
end LZSTJ•MLEA;

task body LrST_8ANDLER is
"define list,

begin
"lniltialize list"
s$*!ct
accept INSERT (ELEM:, LE "TYPE))do

"insert in list*
end INSERT;

or
accept RIMOVE(ELJM:out ELED T'tE)do

"find in list and remove ramo list-
end REMOVE

or
accept SPRESEIIT (ELEM: ELDN TYPE

RES: out DOOLZAZ4)do
'scan list*

end ISPRENsT;
or

end select
end 140MTASK;

The task can be used

task type LIS- USER is

end LI3T OSKA;

task body LIST USER is

198

DACS-8xB6 User's Guide
Impiementation-Dependent Characterisucs

begin
select

LISTKA mOLE. ZWSEA (FrxjsT3L4I
else

raise IVSZ3SUT .R;
end select;
loop

LIST ,NS•L.R. INZSERT(NVCTLDI);
end loop;

end LIST.•SER;

F.1.6 Pragma TASKSTORAGESIZE (T, N)

This pragma may be used as an alternative to the amribute `rASKSTORAGESIZE to designate
the storage size (N) of a particular task object (") (see section 7.1).

F.2 Implementation-Dependent Attributes

No implementation-dependent attibutes are defined.

F.3 Package SYSTEM

The specifications of package SYSTEM for all DACS-80x86 in Real Address Mode and
DACS-80286PM systems are identical except that type Name and constant System-Name vary:

Comoiler System System Name

DACS-8086 iAPX86
DACS-80186 iAPX 186
DACS-80286 Real Mode iAPX286
DACS-80286 Protected Mode iAPX286_PM

Below is package system for DACS-8086.

package System Is

zype Word is new Integer;
type W~ord is new Longinteger;

type OnsignedWord 4s range 0..65535;
for QnuignedWord' SIZE use 16;

type byte is range 0..255;

for byteSZ SZE use 8;

subtype Segmentld is OnsignedNord;

type Address Is
record

offset OnsignedWord;
segment segmentld;

end record;

subtype Priority Is Integer range 0..31;

199

DACS-80x86 User's Guide
Iznplemenadito-Dependemt Charcteijacs

type Nwe is (iUPlf6);

SYSTM WAM constant Same .JlXS6;
STAGUZ OUIT constant :- 16;
mma SEzz constant :- 1048 576;
PZayi : constant :- -2 14T 483 647-1;
mX_ :N? constant - 2 T47_4636ý47;
MU DZGUTS constant :- 13;
MAX -MNTISSA Constant 31;
r E DLT : Constant : 201.00Z-31;
T710 constant :- 0.000000125;

type znterace-languaage is
(ASISE. PLU6, C84, C86 mVZuzz.
AS_ ACT, PLUMCA. C€Ac. c uwig= cr.
ASK NOACr. Phinuoaa, cUAcF. mVk BS NAfC);

type zxceptionxd is record
unit numbe•r Onsgnewlord;
unique rner Onsignecword;

and record;

type TaskValue is new Integer;
type AccTaskValue is access TakValue;
type SemaphoreValue is now Integer;

type Semaphore is record
counter Integer;
first TaakValue;
last TaskValue;
SaIext Semaphorevalue;

-- only used In IDS.
end record;

InitSemaphore : constant Semaphore :, Semaphore (1,0.0.0);

end System;

The package SYSTEM specification for DACS-80386PM package system is:

package System is

type Word is new Short•Integer;
type W~ord is now Integer;
type Word is nOe Longqnteger;

type Onsignedword is range 0..65535;
for UnsignedWord'SIZE use 16;
type OnsignedDWocd Is range O..160fFFrTfrfl0;
for OnsignedDword' SIZ use 32;
type Byte is range 0..255;
for Syte'SIZE use 8;

subtype Segmentld is OnsignedWord;

type Address Is
record

offset OnsignedDUord;
sequent Segmentld;

end record;

for Address Us*
record

offset at 0 range 0..31;
sgment at 2 range 0.. 1;

end record;

subtype Priority is Integer range 0..31;

200

DACS-80x86 User's Guide
lmplmemaionDeperems Characteristics

tfe some 1I (15153466 i);

SYSTE • :MM ceostant amn :- LAFX306 Ia;
STQOPGý UT : constant :1 14;

NEOWRY SIZ : constant : 1601 0000 00004;
INT constant :W -l66000 0000 0000 00000;

"MA INT Constant -l6*P1yFVVr"FI7FTFFYFFO;
NxA DGzS c onstant - 25;
"WAX kAMNTSSA constant :- 31;

FhIV1DZLA constant :- 201.009-31;
TzCK constant : 0.0000000625;

type Interface.language is

(AM486. PLUI6. CoE, cog R5EVEM.
AniaAcr. pue _.cr, C_ cnv ;_Mbnszý_Acr.
sinMCF uoa. IM-RACF, CUROAM' CRzVzRSflWAcT);

type Lxceptionld is record
unit number OnalgnecidNord;
unique, nube: OnsignodDOrd;

end record;

type Taskvalue Is new Inteqer;
type AccTaskValue Is access TaskValu*;
type SemaphoreValue Is new Inteegz;

type Semaphore is record
Counter Inteqer;
first, last TaskValue;
SONIext SomaphoreValue;

-- only used In U0S.
end record;

InItSemaphore : constant Semaphore :- Semaphore'(1,0,.0);

end System;

F.4 Representation Clauses

The DACS-80x86Th fully supports the 'SIZE representaton for derived types. The representation
clauses that are accepted for non-derived types are described in the following subsections.

F.4.1 Length Clause

Some remarks on implementation dependent behavior of length clauses ame necessary:

" When using the SIZE attribute for discrete types, the maximum value that can be specified is
16 bits. For DACS-80386PM/80486PM the maximum is 32 bits.

"* SIZE is only otcyed for discrete types when the type is a pen of a composite object, e.g.
arrays or record-, for example:

type byte is range 0..255;
for byte'size use 8;

sixteen bits allocated : byte; -- one word allocated

201

DACS-80z6 User's Guide
Im mm Depdenm Charactersacs

eight bitper element : array(O..7) of byte; -- four words allocated
type rec is

record
cl,c2 : byte; -- eight bits per component
end record:

"• Using the STORAGE_SIZE attribute for a collection will set an upper limit on the total size
of objects allocated in this collection. If futher allocaion is attempted. the exception
STORAGEERROR is raised.

"* When STORAGEE_SIZE is specified in a length clause for a task type, the process stack area
will be of the specified size. The process stack mea will be allocated inside the "standard" stack
segment. Note that STORAGE.SIZE may not be specified for a task object.

F.4.2 Enumeration Representation Clauses

Enumeration representation clauses may specify representations in the range of -32767..+32766 (or
-16#7FFF..16#7FFE).

F.4.3 Record Representation Clauses

When representation clauses are applied to records the following restrictions are imposed:

"• if the component is a record or an unpacked array, it must stm on a storage unit boundary
(16 bits)

"* a record occupies an integral number of storage units (words) (even though a record may have

fields that only define an odd number of bytes)

"* a record may take up a maximum of 32K bits

"* a component must be specified with its proper size (in bits), regardle of whether the
component is an array or not (Please note that record and unpacked array components take up
a number of bits divisible by 16 (=word size))

"* if a non-array component has a size which equals or exceeds one storage unit (16 bits) the
component must start on a storage unit boundary, i.e. the component must be specified as:

component at N range 0..16 * M - 1;

where N specifies the relative storage unit number (0.1....) from the beginning of the rcor and
M the required number of storage units (1,2,...)

"* the elements in an army component should always be wholly contained in one storage unit

"* if a component has a size which is less than one storage unit, it must be wholly contained
within a single storage unit:

202

DACS-8006 User's Guide
Implemea�a�o-iDependent Characteristics

component at N range X.. Y;

where N is as in previous paragraphnd O <- X <Y<= 15. Note tha for this restriction
a component is not required to start in an integral number of storage units from the beginning
of the record.

If the record type contains components which are not covered by a component clause, they are
allocated consecutively after the component with the value. Allocation of a record component
without a component clause is always aligned on a storage unit boundary. Holes created because
of component clauses ame not otherwise utilized by the compiler.

Pragma pack on a record type will atempt to pack the components not already covered by a
representation clause (perhaps none). This packing will begin with the small scalar components and
larger components will follow in the order specified in the record. The packing begins at the first
storage unit after the components with representation clauses.

F.4.3.1 Alignment Clauses

Alignment clauses for records are implemented with the following characteristcs:

"* If the declaration of the record type is done at the outermost level in a library package. any
alignment is accepted.

"• If the record declaration is done at a given static level higher than the outermost library level.
i.e., the permanent area), only word alignments are accepted.

" Any record object declared at the outermost level in a l.Mry package will be aligned according
to the alignment clause specified for the type. Rerord objects declared elsewhere can only be
aligned on a word boundary. If the record type is associated with a different alignment. an
error message will be issued.

"* If a record type with an associated alignment clause is used in a composite type, the alignment
is required to be one word; an error message is issued if this is not the case.

F.S Implementation-Dependent Names for Implementation Dependent Components

None defined by the compiler.

F.6 Address Clauses

This section describes the implementation of address clauses and what types of entities may have
their address specified by the user.

203

DACS-80x86 User's Guide
lpDeeunam e nm huaacuristics

FA. Objects

Address clauses are suppored for scalar and composite objects whose size can be determined at
compile time. The address clause may deaote a dynamic value.

FA.2 Task Entries

The imp-emenaion supports two methods to equ a task entry to a hardware interrupt through
an addrss clause:

1) Direct trUisfer of control to a task accept staement when an interrupt occurs. This form
requires the use of pragma INTERRUPTHANDLER.

2) Mapping of an interrupt onto a normal conditional entry call. This form allows the interupt
entry to be called from other tasks (without special actions), as well as being called when
an interrupt occurs.

F.6.1 Fast Interrupt Tasks

Directly transferring control to an accept statement when an interrupt occurs requires the
implementation dependent pragma INTERRUPTHANDLER to tell the compiler that the task is
an interrupt handler.

F.6A2 Features

Fast interrupt tasks provide the following features:

"• Provide the fastest possible response time to an interrupt

"* Allow enuty calls to other tasks during interrupt servicing.

"* Allow procedure and function calls during interrupt servicing.

"• Does not require its om stack to be allocated.

"* Can be coded in Pa &• with other declarations so that desired visiblity to appropriate parts
of the program can be achieved.

"* May have multiple accept statements in a single fast interrupt task, each mapped to a different
internupt. If more than one interpt is to be serviced by a single fast interrupt task, the accept
statements should simply be coded consecutively. See example 2 how this is done. Note that
no code outside the accept statements will ever be executed.

204

DACS-S086 User's Guide

F.6.2J Lintatlons

By using the fast interrupt feature, the user is agreeing to place ceruvin restrictions on the task in
order to speed up the software spoese to the interrupt. Ccnsequ•ntly. use of this method to
capture interrupts is much faster than the normal method.

The following limitations ame placed on a fast interupt task:

" It must be a task object. not a task type.

"* The pragma must appear irst in the specification of the task object.

"* AD entries of the task object must be single entries (no families) with no parameters.

"* The enties must not be called from any task.

"* The body of the task must not contain any statements outside the accept statement(s). A loop
statement may be used to enclose the accept(s). but this is meaningless because no code outside
the accept statements will be executed.

"• The task may make one entry call to another task for every handled interrupt, but the call must
be single and parameterless and must be made to a nornal tasks, not another fast interrupt
task.

"* The task may only reference global varables; no data local to the task may be defined.

"* The task must be declared in a library package, i.e.. at the outermost level of some package.

"* Explicit saving of NPX state must be performed by the user within the accept statement if such
state saving is required.

F.6.2.4 Making Entry Calls to Other Tasks

Fast interrupt tasks can make entry calls to other normal tasks as long as the entries are single (no
indexes) and parameterless.

If such an entry call is made and there is a possibility of the normal task not being ready to
accept the call. the entry call can be queued to the normal task's entry queue. This can be forced
by using the normal Ada conditional entry call construct shown below:

accept E do
select

T.E;
else

null:
end select;

endE;

Normally, this code sequence means make the call and if the task is not waiting to accept it
immediately, cancel the call and continue. In the context of a fast interrupt task. however. the
semantics of this construct are modified slightly to force the queuing of the entry call.

205

DACS-8Ox86 User's Guide
ImplmemaionDepedemCharacteristics

If an unconditional entry call is made and the called task is not waiting at the corresponding
accept statement. then the interrupt task will wait at the entry call. Altematively. if a timed entry
call is made and the called task does not accept the call before the delay expires, then the call
will be dropped. The conditional entry call is the pr-efwrd method of making task entry calls
from fast interrupt handlers because it allows the interrupt service routine to complete straight
through and it guarmnees queueing of the entry call if the called task is not waiting.

When using this method, make sure that the interrupt is included in the -interrupt_entr'ytable
specified at link time. See Section 7..15 for more details.

F.6.2J Implementation of Fast Interrupts

Fast interrupt tasks are not actually implemented as true Ada tasks. Rather, they can be viewed
as procedures that consist of code simply waiting to be executed when an interrupt occurs. They
do not have a state, priority, or a task control block associated with them. and are not scheduled
to "run" by the run-tme system.

Since a fast interrupt handler is not really a task, to code it in a loop of somekind is meaningless
because the task will never loop; it will simply execute the body of the accept statement whenever
the interrupt occurs. However. a loop construct could make the source code more easily understood
and has no side effects except for the generation of the executable code to implement to loop
COnStrUCL

F.6.6 Flow of Control

When an interrupt occurs, control of the CPU is transferred directly to the accept statement of the
task. This means that the appropriate slot in the interrupt vector table is modified to contain the
address of the corresponding fast interrupt accept statement.

Associated with the code for the accept statement is

at the very beginning:
code that saves registers and sets (E)BP to look like a frame where the interrupt return
address works as return address.

at the very end:
code that restores registers followed by an IRET instruction.

Note that if the interrupt handler makes an entry call to another task. the interrupt handler is
completed through the IRET before the rendezvous is actually completed. After the rendezvous
completes. normal Ada task priority rules will be obeyed, and a task context switch may occur.

Normally, the interrupting device must be reenabled by receiving End-Of-Interupt messages. These
can be sent from machine code insertion statements as demonstrated in Example 7.

206

DACS-80x86 User's Guide
Implemetmaon-Dependet Characteriics

F.6.W.7 Saving NPX State

If the interrupt handler will perform floating point calculations and the state of the NPX must be
saved because other tasks also use the numeric coprocessor, calls to the appropriate save/restore
routines must be made in the statement list of the accept statement. These routines am located
in package RTSEnutyPoints and are called RTSStoreNPXState and RTSRestore_NPX_State.
See example 6 for mome information.

F.6.2,8 Storage Used

This section details the storage requirements of fast interrupt handlers,

F.69.2 Stack Space

A fast interrupt handler executes off the stack of the task executing at the time of the interrupt.
Since a fast interrupt handler is not a task it does not have its own stack.

Since no local data or parameters are permitted, use of stack space is limited to procedure and
function calls from within the interrupt handler.

F.6.2.10 Run-Time System Data

No task control block (TCB) is created for a fast interrupt handler.

If the fast interrupt handler makes a task entry call, an entry in the _CD_INTERRUPT_VECTOR
must be made to allocate storage for the queuing mechanism. This table is a run-time system dtam
structure used for queuing interrupts to normal tasks. Each entry is only 10 words for 80386/80486
protected mode compilers and 5 words for all other compiler systems. This table is created by
the linker and is constrained by the user through the linker option -interrupt entry table. For
more information, see Section F.6.2.1 on linking an application with fast interrupts.

If the state of the NPX is saved by user code (see Section F.6.2.7), it is done so in the NPX save
area of the TCB of the task executing at the time of the interrupt. This is appropriate because it
is that task whose NPX state is being saved.

F.6.3 Building an Application with Fast Interrupt Tasks

This section describes certain steps that must be followed to build an application using one or
more fast interrupt handlers.

207

DACS-80x86 User's Guide
Implementation-Depaidem Qiaracteiistics

F.63.1 Source Code

The pragma IUTERRUPT._HANDLER which indicates that the interrupt handler is the fas form
of interrupt handling and not the normal type, must be placed in the task specification as the first
statement.

When specifying an address clause for a fast interrupt handler, the offset should be the interrupt
number, not the offset of the interrupt in the interrupt vector. The segment is not applicable
(although a zero value must be specified) as it is not used by the compiler for interrupt addresses.
The compiler will place the interrupt vector into the Th4TERRUPTVECTORTABLE segment. For
real address mode programs, the interrupt vector must always be in segment 0 at execution time.
For protected mode programs. the user specifies the internpt vector location at build time.

Calls to RTSStoreNPXState and RTSResoreNPXStaw must be included if the state of the
numeric coprocessor must be saved when the fast interrupt occrus. These routines are located in
package RTS_EntryPomts in the root library. See example 6 for more information.

F.632 Compiling the Program

No special compilation options are required.

F.63.3 Linking the Program

Since fast interrupt tasks are not real tasks, they do not have to be accounted for when using the
-tasks option at link time. In fact, if there are no normal tasks in the application, the program
can be linked without -tasks.

This also means that the linker options -It stack size. -it_segment size, -mpsegment size, and
-task storagesize do not apply to fast interrupt tasks, except to note that a fast interrupt task will
execute off the stack of the task running at the time of the interrupt.

If an entry call is made by a fast interrupt handler the interrupt number must be included in the
-interrupt entrytable option at link time. This option builds a table in the nm-time system data
segment to handle entry calls of interrupt handlers. The table is indexed by the interrupt number,
which is bounded by the low and high interrupt numbers specified at link time.

F.63.4 Locating/Building the Program

For real-address mode programs, no special actions need be performed at link time. the compiler
creates the appropriate entry in the IMTERRUPTVECrORTABLE segment. This segment must be
at segment 0 before the first interrupt can occur.

For protected mode programs no special actions need be performed. The Ada Link automatically
recognizes Ada interrupt handlers and adds them to the IDT.

208

DACS-80x86 User's Guide
a Dependem Chaacterstics

FA.4 Examples

These examples illustrate how to write fast imnerrpt tasks and then how to build the application
using the fast imeraupt asks.

F.6.4.1 Example 1

This example shows how to code a fast interript handler that does not make any task entry calls,
but simply performs some imerrupt handling code in the accept body.

Ada source:

with System;
package P is

<potentially other declarations>

task Fasjnten~rrptHandler is
pragma INTERRUPT_HANDLER;
entry E,
for E use at (segment => 0, offset => 10);

end;

<potentially other declarations>

end P.

package body P is

<potentially other declarations>

task body Fast-InterruptHandler is
begin

accept E do
<handle interrupt>

end E;
end;

<potentially other declarations>

end P;

with R.
procedure Examplel is
begin

<main program>
end Example)l;

Compilation and Linking:

209

DACS-80x56 User's Guide
lrpm emun-Depenent Characteristics

S MIS Example
$ ada-link Example1 ! Note: no other tasks in the system in this example.

F.6.4.2 Example 2

This example shows how to write a fast imerupt handler that services morm than one interrupt.

Ada source:

with System;
package P is

task FastInterruptHanler is
pragma INTERRUPT_HANDLER;

entry El;
entry E2;
entry E3;

for El use at (segment => 0, offset => 5);
for E2 use at (segment => 0. offset => 9);
for E3 use at (segment u> 0, offset => 11);

end;

end PF

package body P is

task body FastImerruipt-fHandler is
begin

accept El do
<service interrupt 5>

end El;

accept E2 do
<service interrupt 9>

end E2;

accept E3 do
<service interupt 11>

end E3;
end;

end PI,

Compilation and Linking:

210

DACS-8046 User's Guide
lmplemuwntion-Dependent Characterstics

S ads Example2
$ adasJink -tasks- Example2 # assumes application also has normal tasks (not shown)

F.6.4.3 Example 3

This example shows how to access global data and make a pmocedum call fmom within a fast
interrupt handler.

Ada source:

with System;
package P is

A : Integer.

task FasmerniptHandler is
pragma •Ni7ERRUPTHANDLER;
entry E.
for E use at (segment => 0, offset => 16#127#);

end;

end P.

package body P is

B . '-eger,

procedure P (X : in out Integer) is
begin

X :=X+ 1;
end:

task body Fastjnerrupt_Handler is
begin

accept E do
A := A + B;
P (A);

end E
end;

end P;

Compilation and Linking:

$ ada Example.3
S adalink Example.3

211

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.6.4.4 Example 4

This example shows how to make a task entry call and force it to be queued if the called task
is not waiting at the accept at the time of the call.

Note that the application is linked with -tasks=2, where the tasks are T and the main program.
Since the fast interrupt handler is making an entry call to T, the techniques used guarantee that
it will be queued, if necessary. This is accomplished by using the conditional call construct in
the accept body of the fast interrupt handler and by including the interrupt in the -

interrupt entry table at link time.

Ada source:

with System;
package P is

task Fast_InterruptHandler is
pragma [NTERRUPT_.HANDLER;
entry E;
for E use at (segment => 0. offset => 8);

end;

task T is
entry E;

end;

end P:

package body P is

task body FastinterruptHandler is
begin

accept E do
select

T.E;
else

null;
end select;

end E;
end.
task body T is
begin

loop
select

accept E.
or

delay 3.0;
end select;

end loop;
end;

end P;

212

DACS-8Ox86 User's Guide
[mplem on-Dependem Characteriscs

Compilation and Unking:

S ads Example.4
S ada-link -tasks 2 -Interruptentry table 8,8 Example..4

F.6A.5 Example 5

This example shows how to build an application for 80386d80486 protected mode programs using
fast interrupt handlers.

Ada source:

with System;
package P is

task Fast_lnterrupt_Handler is
pragma DrNERRUPTHANDLER;
enn-y E;
for E use at (segment => 0, offset => 17);

end;

end PR,

package body P is

task body FastInterruptHandler is
begin

accept E do
null;

end E;
end;

end P;

Compilation and Linking:

S ada Example j
S ada-link -tasks - Examples

213

DACS-80x86 User's Guide
Implementation-Dependet Characerscs

F.6.4.6 Example 6

This example shows how to save and resmotn the state of the numeric coprocessor from within a
fast interrupt handler. This would be required if other tasks am using the coprocessor to perform
floating point calculations and the fast interrupt handler also will use the coprocessor.

Note that the state of the NPX is saved in the task control block of the task executing at the time
of the interrupt.

Ada source:

with System.
package P is

task Fast_Interrupt_Handler is
pragma D[TERRUPTHANDLER;
entry E;
for E use at (segment => 0. offset => 25);

end;

end P:

with RTSEntryPoints;
package body P is

task body FastInterruptHandler is
begin

accept E do
RTSEnutPoinrs.Sore_NPXState;

<user code>

RTS_.EntryPoints.RestoreNPXState;
end E;

end,

end P;

Compilation and Link'ng:

S ada Exampl-6
S ada-link -npx -tasks - Example_6

F.6.4.7 Example 7

This example shows how to send an End-Of-Interrupt message as the last step in servicing the
interrupt.

Ada source:

214

DACS-8Ox86 User's Guide
lnlmmnastion-Dependent Characteristics

with System:
package P is

task Fast-mImerruptHandler is
pragp UlTRRUTHANDLER;
entry E
for E use at (segment => 0. offset z> 5);

end:

endP;

with Mactrne.Code. use Macne.Code;
package body P is

procedure Send..EOI is
begin

machinejinsuuction'
(register-immediate, mMOV, AL. 16066#);

machine-insr-ucon'
(immediatejregister, m_OUT. 160e0#, AL);

end:
pragma inline (SenEOI);

task body Fastinterrupt_Handler is
begin

accept E do
<user code>
SendEOI:

end E;
end;

end P,

Compilation and Linking:

S ada Example_7
$ adalink -tasks - Example 7

F.6.5 Normal Interrupt Tasks

"Normal" interrupt tasks are the standard method of servicing internupts. In this case the interrupt
causes a coriditional entry call to be made to a normal task.

F.6A.S Features

Normal interrupt tasks provide the following features:

1) Local data may be defined and used by the internpt task.

215

DACS-80x86 User's Guide
Irnpememtio-Dependent Chiarcteuistics

2) May be called by other tasks with no resrictions.

3) Can call other normal tasks with no restrictions.

4) May be declared anywhere in the Ada program where a normal task declaration is allowed.

F.6-S.2 Limitations

Mapping of an interrupt onto a normal conditional entry call puts the following constraints on the

involved entries and tasks:

1) The affected entries must be defined in a task object only, not a task type.

2) The entries must be single and parameterless.

F.6.53 Implementation of Normal Interrupt Tasks

Normal interrupt tasks are standard Ada tasks. The task is given a priority and runs as any other
task, obeying the normal priority rules and any time-slice as configured by the user.

F.6..4 Flow of Control

When an interrupt occurs, control of the CPU is transferred to an interrupt service routine
generated by the specification of the interrupt task. This routine preserves the registers and calls
the run-time system. where the appropriate interrupt task and entry are determined from the
information in the _CDUNTERRUPr_VECTOR table and a conditional entry call is made.

If the interrupt task is waiting at the accept statement that corresponds to the interrupt, then the
interrupt task is scheduled for execution upon return from the interrupt service routine and the call
to the run-time system is completed. The interrupt service routine will execute an IRET, which
reenables interrupts, and execution will continue with the interrupt task.

If the interrupt task is not waiting at the accept statement that corresponds to the interrupt, and
the interrupt task is not in the body of the accept statement that corresponds to the interrupt. then
the entry call is automatically queued to the task, and the call to the run-time system is
completed.

If the interrupt task is not waiting at the accept statement that corresponds to the interrupt. and
the interrupt task is executing in the body of the accept statemen that corrsponds to the interrupt.
then the interrupt service routine will NOT complete until the interrupt task has exited the body
of the accept statement. During this period, the interrupt will not be serviced, and execution in
the accept body will continue with interrupts disabled. Users ame cautioned that if from within
the body of the accept statement corresponding to an interrupt. an umconditional entry call is made,
a delay statement is executed, or some other non-deterministic action is invoked, the result will
be erratic aid will cause non-deterministic interrupt respomae.

Example 4 shows how End-Of-Interrupt messages may be sen to the interupting device.

216

DACS-80x86 User's Guide
implemenmaion-Dependem Ch-acteriscs

F.6.3.3 Saving NPX State

Because normal interrupt tasks are standard tasks, the state of the NPX numeric coprocessor is
saved automatically by the run-time system when the task executes. Therefore, no special actions
are necessary by the user to save the state.

F.6.5.6 Storage Used

This section describes the storage requirements of standard interrupt tasks.

F.6.5.7 Stack Space

A normal interrupt task is allocated its own stack and executes off that stack while servicing an
interrupt. See the appropriate sections of this User's Guide on how to set task stack sizes.

F.6.S.8 Run-Time System Data

A task control block is allocated for each normal interrupt task via the -tasks option at link time.

During task elaboration, an entry is made in the run-time system _CDJNTERRUPT_VECTOR
table to "define" the standard interrupt. This mechanism is used by the tun-time system to make
the conditional entry call when the interrupt occurs. This means that the user is responsible to
include all interrupts serviced by interrupt tasks in the -interrupt entryjtable option at link time.

F.6.6 Building an Application with Normal Interrupt Tasks

This section describes how to build an application that uses standard Ada tasks to service
interrupts.

F.6.6.1 Source Code

No special pragmas or other such directives are required to specify that a task is a normal interrupt
task. If it contains interrupt entries, then it is a normal interrupt task by default.

When specifying an address clause for a normal interrupt handler, the offset should be the
interrupt number, not the offset of the interrupt in the interrupt vector. Thc segment is not
applicable (although some value must be specified) because it is not used by the compiler for
interrupt addresses. The compiler will place the interrupt vector into the
INTERRUPrVECTORTABLE segment. For real address mode programs. the interrupt vector
must always be in segment 0 at execution time. This placement can be accomplished by specifying

217

DACS-80x86 User's Guide
I plenentation-Dependem Craterstics

the address to locate the INTERRUPTVEC"ORTABLE segment with the loc86 command, or at
run time, by having the startup code routne of the UCC copy down the
INTERRUPTVECrORTABLE segment to segment 0 and the compiler will put it there
automatically. For protected mode programs. the user specifics the interrupt vector location at
build time.

F.6.6.2 Compiling the Program

No special compilation options am required.

F.6.63 Linking the Program

The interrupt task must be included in the -tasks option. The link options -it stack size. -.

Itsegment size. -mpsegmentsize, and -task storagesize apply to normal interrupt tasks and
must be set to appropriate values for your applcation.

Every interrupt task must be accounted for in the -interrupt entrytable option. This option
causes a table to be built in the run-time system data segment to handle interrupt entries. In the
case of standard interrupt tasks, this table is used to map the interrupt onto a normal conditional
entry call to another task.

F.6.7 Examples

These examples illustrate how to write normal interrupt tasks and then how to build the application
using them.

F.6.7.1 Example I

This example shows how to code a simple normal interrupt handler.

Ada source:

with System;
package P is

task NormalInterruptHandler is
enry E;
for E use at (segment => 0, offset => 10);

end;

end P.

package body P is

task body NormalImemaptHandler is

218

DACS4-xS6 User's Guide
I m---mentazon.Dependemg Characteristics

accept E do
<hmdle ieupt>

end E;
end;

end P.

with P.
procedure Example- is
begin

<main program>
end Examplel;

Compilation and Uinking:

$ ada Example)I
$ ada.Ank -tasks 2 -interrupt entrytable 10,10 Examplel1

F.6.7.2 Example 2

This example shows how to write a normal interrupt handler that services more than one interrupt
and has other standard task entries.

Ada source:

with System;
package P is

task NormalTask is

entry El;
entry E2: - standard entry
entry E3;

for El use at (segment => 0. offset => 7);
for E3 use at (segment -> 0, offset => 9);

endd

end PI,

package body P is

task body NonnalTusk isbegin
loop

select
accept El do

<service imm'apt 7>

219

DACS-80x$6 User's Guide
lmplementsila-Dependemt Chuucraitcs

end El;
or

accept E2 do
<•aNd re mndezvous>

end E2:
or

accept E3 do
<service inenupt 9>

end E3l
end select

end loop
end Normal-Task.

endP;

Compilation and Linking:

S ada Example_2
S adalink -tasks .interrupt entry table 7,9 Exaple..2

F.6.7.3 Example 3

This example shows how to build an application for 80386 prtected mode programs using normal
interrupt handlers.

Ada source:

with System;
package P is

task NonaalInterfuptHandler is
entry F.
for E use at (segment => 0. offset -> 20);

end;

end P.

package body P is

task body Norma•_•mpt._Handler is

accept E do
null;

endE
end;

end R.

220

DACS-S0X86 User's Guide
Implemenatn-Depaxend Cunrsaass

Compilation and Linking:

S ada Example3
$ adaMink -tasks -IntMeuptnetry Table 20,20 Example3

F..7.4 Example 4

This example shows how an End-Of-Imenupt message may be sem to the imrrptpng device.

Ada source:

vith System:
package P is

task Normal Interrupt Handler is
entry C;
for Z use at (segment -> 0, offset -> 7);

end;

end P;

with Machine-Code; use MachineCode;
package body P is

procedure Send OI is
begin

machine instruction'
(register jimmediate. m MOV, AL, 16#66#);

machine instruction'
(iunediate register, mOUT, 16#OeO, AL);

end;
pragma inline (Send_£OI);

task body NormalInterrupt Handler is
tegin

accept 2 do
<User code>
Send .OI;

end E;
end;

end P;

Compilation and Linking:

s ada Example 4
S adaslink -tasks 4nterruptetry table 7,7 Example_4

221

DACS-80x86 User's Guide
lmplementaion-Dependent Characteristics

F.6A Interrupt Queuing

DDC-I provides a useful feature that allows task entry cals made by interrupt handlers (fast and
normal variant) to be queued if the called task is not waiting to accept the call, enabling the
interrupt handler to complete to the IRET. What may not be clear is that the same interrupt may
be queued only once at any given time in DDC-I's implementation. We have made this choice
for two reasons:

a) Queuing does not come for free, and queuing an interrupt mome than once is considerably
more expensive than queuing just one. DDC-I feels that most customers prefer their
interrupt handlers to be as fast as possible and that we have chosen an implementation that
balances performance with funcuonality.

b) In most applications, if the servicing of an interrupt is not performed in a relatively short
period of time, there is an unacceptable and potentially dangerous situation. Queuing the
same interrupt more than once represents this situation.

Note that this note refers to queuing of the same interrupt more than once at the same time.
Different interrupts may be queued at the same time as wel as the same interrupt may be queued
in a sequential manner as long as there is never a situation where the queuing overlaps in time.

If it is acceptable for your application to queue the same interrupt more than once, it is a
relatively simple procedure to implement the mechanism yourself. Simply implement a high
priority agent task that is called from the interrupt handler. The agent task accepts calls from the
interrupt task and makes the call on behalf of the interrupt handler to the originally called task.
By careful design. the agent task can be made to accept all calls from the interrupt task when they
are made, but at the very least, must guarantee that at most one will be queued at a time.

F.6.9 Recurrence of Interrupts

DDC-l recommends the following techniques to ensure that an interrupt is completely handled
before the same interrupt recurs. There are two cases to consider. i.e. the case of fast interrupt
handlers and the case of normal interrupt handlers.

F.6.9.1 Fast Interrupt Handler

If the fast interrupt handler makes an entry call to a normal task. then place the code that
reenables the interrupt at the end of the accept body of the called task. When this is done, the
interrupt will not be reenabled before the rendezvous is actually completed between the fast
interrupt handler and the called task even if the call was queued. Note that the interrupt task
executes all the way through the IRET before the rendezvous is completed if the entry call was
queued.

Normally, end-of-interrupt code using LowLevelJO will be present in the accept body of the fast
interrupt handler. This implies that the end-of-interrupt code will be executed before the
rendezvous is completed, possibly allowing the interrupt to come in again before the application
is ready to handle iL

If the fast interrupt handler does not make an entry call to another task. then placing the

222

DACS-80x86 User's Guide
ImplmenzdonDependent Characteristics

end-of-intenupt code in the accept body of the fast interrupt task will guarantee that the interrupt
is completely serviced before another interrupt happens.

F.6-9-2 Normal Interrupt Handier

Place the code that reenables die interrupt at the end of the accept body of the normal interrupt
task. When this is done, the intemnupt will not be reenabled before the rendezvous is actually
Completed between the rndnualitrrupt handler and the called task even if the call was queued.
Even though the interrupt "completes" in the sens that the MRET is executed, the interrupt is not
yet reenabled because the rendezvous with the normal task's interrupt entry has not been made.

If these techniques are used for either vanant of interrupt handlers. caution must be taken that
other tasks do not call the task entry which reenables interrupts if this can cause adverse side
effects.

F.7 Unchecked Conversion

Unchecked conversion is only allowed between objects of the same "size". However. if scalar type
has different sizes (packed and unpacked), unchecked conversion between such a type and another
type is accepted if either the packed or the unpacked size fits the other type.

F.8 Input/Output Packages

In many embedded systems. there is no need for a traditional I/0 system, but in order to support
testing and validation. DDC-I has developed a small terminal oriented 1/O system. This I/O system
consists essentially of TEXTJO adapted with respect to handling only a terminal and not file I/0
(file I/O will cause a USE error to be raised) and a low level package called
TERMINAL-.DRIVER. A BASICJO package has been provided for convenience purposes.
forming an interface between TEXTJO and TERM[NAL...DRIVER as illustrated in the following
figure.

raXT 10
BASIC 10

The TERMINAL-..DRIVER package is the only package that is target dependent. i.e., it is the only

22

DACS-8Ox86 User's Guide
Implenentamon-Dependent Characeistics

package that need be changed when changing communications controllers. The actual body of the
TERMINAL-DRIVER is written in assembly language and is part of the UCC modules DIIPUT
and DIlGET. The user can also call the terminal driver routines directly, i.e. from an assembly
language routine. TEXTJO and BASIC_IO awe written completely in Ada and need not be
changed.

BASIC-1O provides a mapping between TEXTJO control characters and ASCII as follows:

TEXTO ASCII Character

LINE-TERMINATOR ASCII.CR
PAGETERMINATOR ASCII.FF
FILE-TERMINATOR ASCILSUB (C0RL=Z)
NEW_LIIE ASCII.LF

The services provided by the terminal driver are:

1) Reading a character from the communications port. Get_Character.

2) Writing a character to the communications port. PuLCharacter.

F.8.1 Pikage TEXT-1O

The specification of package TEXT-1O:

praqga page;
with EASIC 10;
with I0 EXCEIPIONS;

package TEIX?10 is

type FILZETYPE Is limited private;

type FILE4MODE Is (IN-FILE, OUT3FILE);

typ. COUNT is range 0 .. INTEZGE'IAST;
subtype POSITIJ COUNT is COUNT range I .. COUNTI'LAST;
UNBOUN•ED: constant COUNT: 0; -- line and page length

-- max. size of an inteqer output field 20 #

subtype FIELD Is INTEGZR range 0 .. 35;

subtype NUIMER SAlE is INTEGER range 2 .. 16;

type TTPEST Is (LOWVELCA3, UPPRCA3SE);

pragma PAGE;
-- File NManaqement

procedure CREATE (FILE in out FILE TYPE;
MOCK : In FILE7NOQ :OUT FILE;
ym In STRING :-*
TO : In STRING :-~

procedure OPEN (FILE : in out FrLITPZ;
MODE in FXLE NOCE;
NAME in STRING;

224

DACS-80x86 User's Guide
Impima~azio-Dependem Chwaceristcs

FOr am SIn ING :---

procedure CLOSE (FILE in out FILE TYP),:
Procedure DELETE (MILE i.n out TILE_TYPE);
procedure MESET (FILE in out FILE3TPz;

IacE Ln FILE HO=);
procedure 1rsET (FILE in out FILE TrrE);

fnction NOOK (FILE in FILE TYPE) return FiL NOot;
function "M (FILE .n FILE TYIP) return STR-N;
function ram4 (FIn. in FiLt-TYPZ) return STAING;

function iS-OPEU(FILE Ln FILE TYP! return MOOLMAN;

pragla PAGE;
-- control of default input and output files

procedure SET -INPUT (FILE in MIETYPE);
procedure SETl 0OTPU (FILE in FnZLETPE);

function STIxamO-poT return IrLETYPz;
function STAmMAq0VTP•0P return FxLETYPE;

funct ion CUR .NT.INPT return FILE-TYPE;
function CTUJUT OYTPU return TI. TYPE.;

prague PAGE;
-- specification of line and page lengths

procedure SET LnINELEGTU (FILE in FILE TYPZ;
TO in COUNT);

procedure SET LnINE LENGT (TO : Cn COUNT);

p:ocedure SET PAGE LENGT (VFILE In FILE TYPE;
TO in COUNT);

procedure SETPAGE LENGTU (TO :in COURT);

function LINE LENGTH (FILE : in FILE TYPE)
return COUN;T

function LIN-ELDTNM return COUNT;

function PAGELEMGTM (FILE : in FILE TYPE)
return COUNT;

function PAGE-LENGTH return COUNT;

praqia PAGE;
-- Column, Line, and Page Control

procedure NEN.LINZ (FILE i: n FILE TYPE;
SIACING in POSITIVE COUNT : 1);

procedure NEW LINE (SPACING In POS:TIVE COUNT :- 1);

procedure SKIP LINE (FILE : in FILE TYPE;
SPACING In POSITIVE COUNT 1-);

pr:cedure SKIP.LIrN (SPACING In POSITV• COUNT : 1);

function END Of LINE (IrLE in FILErTTPE) return BOOLEAN;
function ENO"OT-LI return DOOLEAN;

procedure NEw PAGE (FILE in FIZETYPE);
procedure NEK PAGE;

procedure SKIPP••AG (FILE in FILETYPE);
procedure SKIPPAGE;

function END O" PAGE (FILE in rZILETYPE) return BOOLEAN;
function END OF PAGE return BOOLEAN;

function END or FILE (FILE in FrzLJETYPE) return BOOLEAN;
function ED -O FILE return DOOLEAN;

225

DACS-Sxft User's Gide

procedure SZCiOL IIiZ I:n V= TISE;
TO in 36I1YWm• C0 };

procedure SET COL (TO : in POSITIYW COWT);

procedure SETLINE (F=LE : FInLE VTYWPI
TO in VO•ITInWEONST)

procedure SETLIE (TO In POST•TMIW COWIT);

function COL (FIZLE In FILE 2TY3)
return POSTVEYcomrT;

function COL return POSITIn-COMGT;

function LIN (FIME in FILE TIPS)
return lon22YaCOwT;

function LINE return POSIZTXI COUMT;

function PAS (FILE In FILE TMIE)
return 1Z05•UWnT COON;

function PAG& return IOSZTVZCOONT;

pragge PAM;
-- Character Input-Output

procedure UT (FILE In FnZLT•ETE; I2T1 out CRAEACTER);
procedure GET I 1I2 : out CUAMC2ER);
procedure PUT (FWILEC i FILE TYIZE ; 11 i n CULACTZR);
procedure PUT (ZTD: In C)ARACTER);

-- String Input-Output

procedure G&T (FILE in FILEr•TPE; ITEM out CUARACTER);
procedure GMT (1I out CIURACTER);
procedure POT (FILE in FILE TYP•E; I1'M In CEARACTER);
procedure POT I ITEM In CRARACTER);

procedure GET.LINE (FILE in rILETYPE;
ITEM out STRIN1G;
LAST out NATURAL);

procedure GXT-LIn (ITEM out STRING;
LAST out ATUR);

procedure PvOTLNE (FIzE in rILE TYPE;
X1T3 In STRING);

procedure PUT LINE (1TEM in STRING);

pragma PAGE;
-- Generic Package for Input-output of integer Types

generic
type NON is range o>;

package IrITEGERI0 is

DEAULT MID?1 F5ILD :MID 111021;
DEFrAULT-EASE NUER_ ASE :e 10;

procedure GET (FILE In FILM2•YE;
1T23 out NUll;
112 In FIED :-0);

procedure GET (ITEM out NUI;
wIrTm in FIElD :-0);

procedure PUT (IF•L In nILZYPE
I231 in NUM;

1DTS I in FIED :- DFAULTU 1S3;
EAS In WSlERASZ :-DFUTAE

procedure PUT (Mm La NUN;

MM02 In FI0nED :-FUL MWA023;=)EAS i~n NINSER EAS :0 DEFJULT EASE);

procedure GET (FROM in STRING;
I'm out NUN;

226

DACS-80u86 User's Guid

LA! out mOSFIV);

przzeduz. m0 (To out STRIP;
ITEM in ON.;
SAS& In 33633mlp :-DEAGT AD)

eAd VITZGERk10;

PCSgma PanE;

-- Generic Packages for I-ut-Otpt of Mal %,"Go

generic
typo mm1 IS d"gLtS <>

package FLOAT.IO Is

DEFAULT gmS :IL r a 2.
DUADLT AFT FIELD :- 3319"6IS - 1.
DEFAULTEDv FI: rz 3.

Procedure OC? (FILE In FILE TTPE;
ITM out mm.;

wvID? in FI=L 0);
procedure CW? (17= out 334;

wIDn In FIEL o- 0;

proceduare PUT (FILE in FILE TYPZ;
IM~ In UM4;
FrE In FIEL - DFALT FrE;

UP In FIELD DEFAULTED);
proceduare POT (IDI in mm3;

FrEz In FIELD DWFAL? FORE;
AnT in FIELD aDEFUTAT
UP In FIELD DEMALT EDx);

Procedure =3 (IKN in SIRmU;
ID4 out 334;
LAD? out PODIIME;

Procedure PUT (To out STARS;
?TD In M34;
AFT In FIlD DEFAULT AM7;
zxD In FIED : DEFAULT 3D);

and FLOAT 0;

pragee PAGE;

generic
type 3UM is delta <>;

package FIM-D10 is

DEFAULT-T TOE IEL= NMIl FMR;
DEFAULT AFT FIZLD WWIll AMT
DEFAUL7?ED FIELD 0;

proceduce =T? (FILE LA FXIE TYPE;
Ir4 out MM4;

1ID3 in FIED : 0);
procedure 63T (Z= out 33M;

"WIDTO In FIED 0);

Procedure PUT (r= In FILE TYPE;
linE In 334;
TrEZ to I 7= FILD WAA3LT Fm;
"AlT In FI=L EAUTAT
EDP In FIE= DEAULT MOP);

Procedure PUT (In :M in 3MM:
FrE LA FIELD : - WAULT FRE;
AFT :In FIELD aDEFAULT _AFT

227

DACS4O406 User's Cudde

procedure UT? (. Is S3ZUS;
ma ot ý;

LAST out 106ZW3;

procedure PUT (TO out STRZU6;

IV In FW.D :e WADL%90;

presms PAW;
-- Generic Packa" tot Zaput-Owttut of Uaineation TIP"e

generic
type Lai (4->;

package MU ATI?00% is

DK7AVLT =160 VzZW 0
DZrAULlSZTTZG TTPXSCT : 0M13CASK;

procedure an? (r=h to VLE-TY13; W!D out COM;
procedure GMT (rM out am=)

procedure PUT (FIul FlET13;
ITE In SMM

WIDT3 In r=5 ag= VUDL IMT;
SZT In TTPlSZT - DfAOLfaT:Tnal;

procedure PUT (2234 In COM;
3202 in 72KWD :.MAU?.? WIM23
SET in TIll 83? : DzrUALSlCT2VGL

procedure GET MM~ In STRIWG;
2234 out CON:;
LAST out Mall2W

procedure PUT (T0 mat 523236;
2234 in zam;
SET In TTPllC 13? OUSL? 53222);

end EaUNOA?20P-20;

pragma PAGU;

-- Exceptions

STATUS CROOR exception renaes I20jXCC?2OUS -STATUS USM
300333103 exception renames 20 3XCVT CwS .30053in3
m3163330 exception rename IOK2CZVT2OUS."~
03S33103 exception renames 203IU22OWS. 053333;
DEVICE aim exception rMnasea 203XCV1205S .03v!Z..UW0.
to33303 exception renhame 01301122055. go ZpAMj
DATA- ZMYM exception renames 203CC1?20U5M .03253330;R
LATOUT-umn exception renames 20130112205. LAIOUTOT.3M.

prage pea";
Private

type rILZTZ is1 L
record

FT : ZTZ133 : -1.
end record;

and TEXIT0;

228

DACS4OzI6 User's Guide

FJU Packge IO_.EXCEMONS

The specificatiou of da package IOEXCEPI ONS:

package ZO : eXTIS Is

SOTAIPU m exception;
SM-PA : exception;

uainpaRU exception:
VU SUM :exception;
OCVTI1;ZtAO exception; Sm MO exception;
"DAT U exception;
LAW00 h3M : exception;

end 0 X•CD'MOCVS;

FJU3 Packgae BAIC-1O

The specification of package BASIC-1O:

with 1OZXCZIZtSS;

package 3ASIC ZO Is

type count Is range 0 integer' last;

subtype positive-count is count range I count' last;

function getLnteger return string;

-- Skips any leading blanks, line terLnators or page
-- temoinators. Then reads a plus or a minus sign if
-- present, then reads according to the syntax of an
-- integer literal. which may be based. Stores in Item
-- a string containing an optional sign and an Integer
-- literal.

-- The exception DATA ER•R is raised if the sequence
-- of characters does not correspond to the syntax
-- described above.

-- The exception END ERlOR is raised If the file ternatttor
-- Is read. This means that the starting sequence of an
-- Integer has not been met.

-- Note that the character teminating the operation must
-- be available for the next get operation.

function getrCeal return string;

-- Corresponds to get integer except that It reads according
to the syntax of a-real literal, which may be based.

function getenuseration return string;

-- Corresponds to get integer except that It reads according
to the syntax of an identifier, where upper and lower
case letters ar equivalent to a character literal

-- including the apostrophes.

229

DACS40M Ues GeOid

function getiLtem (le06th in Integer) aaturn string

-- Beeds a string f rem the "Tret li, and storeso it SA
- item. If the remining nier of characterssa the

-- urrent line is less than length them emly' thae.
-- characters aze returned. fhe line tomnaoter is set
-- skipped.

procedure puti•tem (te : In Strigbe)

-- If the length of the string is greater them the esntre
-mximum ine (1ne6em4th), .the eaxeptiom LITouM In
- a rcaised.

-If the string do"s net fit on the current ln a line
- teinator is output, tham the Item is output.

-Line and page lengths - AM6 14.3.3.

procedure setline4ýleftgth (to in count);

procedure aetop & length (to in count);

.function linelengtlh return count;

function page laegth return count;

-- Operaton. on couams, lines and pages - AM 14.3.4.

procedure nvewline;

procedure skipUne;

function end-of -lne return boolean;

procedure newjage;

procedure skipj-age;

function esdofjsqe return looleen;

function endof ftil return boolean;

procedure Ssto.ol (to in positi•e-Count);

procedure set•lne (to In positive coUt);

function col return positive count;

function Line return positive-count;

function page return posLtIveocount;

-Character and string procadurs.
-o Corresponds to the procedures defined In AM6 14.3.6.

procedure getcharcter (item out character);

procedure getstring item out string);

procedure get-11ne tem out string;
last out natural);

procedure put-charcter (item : in Character);

procedure putatring (item : In string);

230

DACS,4ofs Unes G~dds- qde ha-iadt

peoce.arg pmtila. (Item Ia striag):

- exceptions:

usima.m exceptio Conamesa ZOUSW!ZWuu 9110mD;
OUVXCra exceptionree 101!zau qM msgffVz no";

zmqVS= exceptio ona ese Z1ONCMTZS.UW33mFM
Duk-mm exception reammea XqOUCUU .=nZ .ba
ZL&100TSA *=option remame L n. LhsTD

end 3UZCZO;20

M.84 Packag TERMINAL-DRIVER

The specificatio of package TERNUALDRIVER:

package TZN*UXALORWPjl Is

procedure putchazacter (cb : I character);

procedure getchazacter (Ch :out Character);

private

pragma interface mrime, put-chazaater);
pragma interface aPelliag (putýcbabacter. DhlUgT~npuchtcacater);

pragma Interface (WSSE, get-cheacterl;

end TZMWSALDBZW3M

F.M. Packages SEQUENTAL-10 and DIRECT-JO

The specifications of SEQUENTILJL-O and DIRECTJO mre specified in the ALMI:

Since files are not supported the subpograms in dueo wilt maise USE-ERROR or
STATUS-ERROR.

231

DACS-10u86 Vlyes Gidet
-- nd OinaaUds

F.SA Packap LOW-.LEVEL-10

11w qpecfication of LOW-.LEVEL-10 (16 bis) is:

with System.

package LcOWJ.ZVV.ZO- Is

subtype porta&ddreaS is System.ftsUnsieesrd;

type 41Lio.S is new integer range -128..127;
type ll-Io..16 is ame Lnteget:

procedure *sedcmt ~te(d*Vice :in poet addresds
data :in Sytetm.Uvte);

-- u"gigs"d a bit entity

procedure 0404dmtrol(devices :In pert-addrefss
data : In System.aftalgn0100);

-- unsigned Is bit entity

procedure send control (devIce : in pert address,

-- signed I bit entity

procedure send-control (device : In port address;
data :In 11.ic ý16);

-- signed 14 bit entity

procedure recelve-control (device :in port address;
data :out System.Dyte);

-- unsigned I bit entity

procedure receive control (device in port~addreiss:
data :out System.Unsignedlord);

-- unsigned i6 bit entity

procedure receive-control (device in port address;
data :out liO58);

-- signed I bit entity

procedure receive-controlldevice, in part address;
data :out h1o 16);

-- signed 16 bit entity

private

pragms inhinelsemndcontrol, receiveýcofntrol);

end LOW LEVZL ZO;

The specification of LOMWJ.ZVtkLI (32 bits) is:

with SYSTEM;

package LOWJZ.LVELZO Is

subtype pcrt~address is Ssytem. Unsigaed~rd;

type 11lqo. is new sbortiLntegejr range -128.. 127;
type 1l1:1p16 is sew sabot-integer;
type 11_1p32 Is sew Integer:

procedure send control (device, :In port~addrssa;
data :in Uystem.syte):

-- unsigned & bit entity

procedure send-control (device toi pact address.
data :in Systia.91mognedbrd);

DA.S-O•dx6 User's Gie
ONPd Charct-i

-- Unsigaed If bit entity

procedure ibadncoatro (evie. La pet r aress;
s ddata In System.ftmignmeDUord);

-- unsigned 32 bit enti•ty

procedure sedcLCoatVoel (device in port address;
data In Ilio.Iq);

-- •igned I bit entity

procedwu send pontzolidevice oi porte-ddiresa;
data In 11_o2);

-- signed if bit entity

procedure seacdpoatrel (device in port address;
data In .i7ye- , 3);

-- signed 32 bit entity

procedure roceive control(device In port address;

data : ot Syst--.Dnytge)o;)-- unsigned I bit entity

procedure receive€control (device In port address;

data seot System.Unsi~gnedDbod) ;-- unsigned 13 bit entity

procedure receivecontrol(device In port address;

data out Syast.oasigneo)d);

-- signed 2 bit entity

procedure rc-eive control(device in port address;

-- signed 16 bit entity

procedure rceiLve control(device in port addýss;

-- signed 32 bit entity daa otIq2;
data seot 11 1o 32);

-- signed 22 bit tentity

private

pragna Ln oiio(send control, receive control);

end LON LZVL 10;

F.9 Machine Code InsertiOn

The reader should be familiar with the code generation sategy and the 80x86 instrucon set to
fully benefit from this section.

As described in chapter 13.8 of the ARM (DoD 831 it is possible to write procedures containing
only code statements using the predefined package MACHINE-CODE. The package
MACHINE-CODE defines the type MACHI-NnENSTRUCrlON which, used as a record aggregate.
defines a machine code insertion. The following sections list the type MACHI•E_INS7RUCFION
and types on which it depends, give the restrctions, and show an example of how to use the
package MACHIDECODE

233

DACS-8Oit86 User's Cuide
lmpemmaonDependent Caacterstics

FJ.9. predefined Types lbr Macblue Cade Insertiuu

The following types ame defined for use when making machine code inseniot (their Wye
declarations are given on the foMowing pages):

type opcode-type
type operndtype
type register-type
type segenutjregister
type machine...amtnacton

The type REGISTER..TYPE deftnes registers. The mogitwr Sri describe registers on the floating
stack (ST is the top of the floating stack).

The tipe mACHMhJ!JNSTUCTION is a discriminant =rdcn tye with which every kind of
instuction Pin be described. Symbolic nanes may he used in the form

name ADDRESS

Restrictions as to symbolic names can be found in section F.9.2.
It should be mentioned that addresse are specified as 80386/80486 addresses. In case of other
targets. the scale factor should be set to "scale-l".

typo Opcode tyPe is
-- 60846 in~structions:

aAAk. ARa-AM, skM8, a h-OC, aUADO, a-AND,aCAL
aCAZ.LN.

skCsw, UCLC, aCiD, a-CL1, aCC, amCH. 9U-eS, aeND.-suc
aDVAS. aUOEC. arbiV. al?.- :Zorv, aDIDL, -01, mHl.=C itA
a INTO aIM?.T aJA UýJAK. .33, .331, a-X, xkJCCZ. N3.

sk30, a3JP, a-ji. a-JF0 a3NA. .3333, .33. lLu31 V11%a

a.30. a331. 0a3PE, aL40, .. a_ 32.P 9 .333, aLB.

kLOOPZ. a NOV. UIIDYS. UL-M. a16am. a-OP, a-NOT, IV3, a
3101.P mjo17, a-pass, a3108W. mA=i. aMAC. a_=.. a 303,
aREP. aMp!,. a REPN!, aRE?, aM?=P, aREZTlI aREtUP.I 9
m-SAL. aSA, .831L, k383R. .853., aSCAS. a-STC. a-STV, vL.
a-SOS, a-803. aWsT a_1A?. a-...1C30, aLA?, axkR.

-- 6027/80147/80M1 Floating Point Pmocessor instructionls:

§._P8Z. sJADD. a rADOO. at71001, a7W OL . a3SP. aCS-1
asncLE. IR CaM. aFOOSID. -kFCOe, a7CyW, I-CWP I DESI
a70?'!, ajV~rm, a-o" 701, toM, 21 - IWOX, a - IvUP. a-FlZ.
371100c, ajnom0, a ricam, a1?_rCa, stJica. a-ricamd, a T IV,
aF10Ivo. a rzon!. a7Ti-rDr , EjfLD. atlOaIOL FýI
ayZ)WLO, ujincS??, a-wzuz: .718?X. 01yuso, a-nni, a-FISTPO,
m,R713T1L, mjisus, n71r30 aM7?8033 *_nSUBAD, a~rLD, a TWOLV.
a7WLCV, U7WWDZM, aVWLLG2, x7WIJI2, PSpL2&.E aF-WLL2?. E37101,
N3j101, a37101, a FlL, x3733W, aFIDP now. a-W, af1PATAM.
aJPpflI. aV1ThN. 0aVUWIT, aLTU803. - 783W!, uPS aLEh= an7sE?1W
,ýFanr a30?, 7 , a MD.0 ajrSCW. a TS&X, 378??, aSI!SPO,
ajss1I, ajsTsmax, a 7r03, 378030, a~rW 7803, 303, -R 20330,
a780331, 3128?,- 311131?, 0_TANfl VILW2CS aFITAC?, .11121,
vk7TL2NI1, nj236,

-- 0284/40284/40386 instructions:
-- notice that soea 12ediate versions of the 0804
-- Instructions only exist on thea. targets
-- (shifts, rotates, push,. Il...A

3)00160. a-CLTS, a our", VIZUS. VIUI, a ý.:=V!, aLGT
aL=O, .181L, m~OuTs, a IOWA. ALPUSRA. a.SWT. .810?T,

234

DACS-00B Users Gu"d
D ,IP- Omtacersda

auxL. aLO. uU.aLI

-- 6 bitaies.

OLW.S= RUUUW. 4iL.3"UI. amum.

-- the 60346 specific inatzmatinam:

M~Ll.M MSZllZ, a SzKID, aU-S . amUIC. aK
amUIG. a-Um. a~L,2 " skUML. skUTw&. mLUTU.

2 _SKIU a-UTO. aLSKII ORUTEK aSOCT". ma.Sm.
MUSTZ. a &W, amo. mlk?. OL&M. ELMO,

:%ATS. wmLFS. M%=S. a-LIS. ammuI. Ra m.
=30vm, aNOYDI. at-OV1o a SILO, aimN

-- the 80367 specific instructions:

sk-FucaI, a-uju LT~P I-~, -= OM

-- byte/u ord/dwerd variants (to be used, when
-- not deductible from Context):

RAanca aADCN. lkADam £1305, ýaMOK. a ADS.
mALND. jMaU. aAWD, "TV1, aU-TO. aDICI
"aIICO a am, *mb a am M IW aBSIS, A-amI,
a-CMDu mcisw, amco, OLOWD, amow.. am0.0.
8saais. Wmeav. w.0.80. a-Dam "mol A-Dpm.
" mva 0o01w. mozuD, uzozym, azouw. uZOuD
m,_nwu. aU nm. a.DLamo, aINaI. aZNCN. SL==O
azuil. aLIBI, mkfl4SD, mLC.-S. a-OOsU. aLLOOSO.
aummV, uNOVI. aNOVO. a 30783. a NOV81 3NOV53
uNMOVS3. NOII, aUOSamnOnfl aNCv8Iw, SUL. NM3NL,
a-m=LO skUG, XM=GS .3303. aNOTI, 33021,
33010. .035. mO-Cm, mOR-On uOOT. 3,00181,
30150TS. a1011, a)013, sUauv. OLumO skRC
uLRCLw. aLICLO, aIRdS. 13-Ww, IV=cD OFa 0.3
mjtOLK, inflOW, it-NMI .3033, am30AD uRSMI.
aýSALW' u1ýSALO. ISADI, OL18W, aMID, skSULU.
3581.1, auSUON, IR8833a-S. aSIWW. uI Ok, a3355
RLSSS, akSMI, uýsd185, a-SCIB. aRSCASO. sk1083,
381081,. MLSIOSO. m-SOU. uSD33. m5010. mwnIS,
mL.281w. MLTZSTI. .1035, a31031 m1033, R-A 085
inODATA3. aýDAThD,

-- Special * instructions': a-label, a -reset.

-60067 temp real load/ store and~pop: m37WD, aL1SIITI;

pragma page;
type aoerand-type is (none. 80 nOoperands

12e0diate, - one immediate opead
register. -one regiater operand
address, one address operand
systaikaddregs. m oe * address operand

ft&M. CALL -
register Imeodiate, -two operands

-- destinatioR ise
-register

-- source to Immediate
regiser rgistr. -two register operands

register _address. -two operands:
-destination is
-register

-source is address
address register, -- two operands

235

DACS-SMjiI Uer's Guidf-RM -qd Cummdut

-- destisatios is
-. address
-Source la register

reiSt~rSYSt~mamdire4sn. two operands
-- destination Is
-- egiter
-- source is 'address

systamaddrese-regiater. - two operands
-destination is
-- address
-- Source In register

address immediate. -- two operands
-dsestization in
-- address

- source Is Immdiate
System address imedlate, two operanids

-destination is
I address

-- Source is immediate
lonediate register. onl00y allow"d for OUT

-Port isLamiediate
-- Source is register

immedAte-Limedlate. -only alloed for

register reginAterxmsdIAtG. -- allowe for DOLL.,
-- saS. SIWLI

register address-Imeodiste. - alloe for ZWmis
register aYstsma-ddress-iinedlate. allowed for DOLiM

address-register Iinediate. -- allowed for SURDLm,
-- SULDmm

syson ddrss egiterImeiat -- alloed for smidm.
-smwUmm

type regiSter type IS (AX, CX. DX, 31. Si, BF, SI. 01, - word regs
AL. CL. OL, Mi. An. CU. on. on. -- byte rags
lAX. ECU. 2X. 231.281,2U.31.38! 2,-- deord regs
&S, CS. SS. Ds. tI. as. - $*lector$

"31I. 31 DZI.a UST, z31Dz. - 8084/80186/90286 cominations
ST. ST, , 5T2. ST3. - floating registers (stack)
ST4, ITS. ST6, ST7,
nil);

-- the extended registers MlAX .. SDI) plus TS and 68 are only
-- llowed in 03026 targets

type scale type is (scalel., scale-2. scale 4. scale-I);

subtype machine string is String(l. .100);

prague page;
type machine instruction (operand mkLd :operand~type) is

record
opcode :opcode _type;

case operand-kind is
when UNediate.')

imepdiatel integer; -- Lmediate

when register
Zýrreister register-tye; -- Source sand/or destination

when address -3
4aseqmsnt :register type. -- source and/or destination

a address-base registmirtype;
a~addreas index register-type;
a address scale soale-type;
a-address-offset Integer;

when systemaddress ->
sa-addrenss systm.address. -- destination

2M6

DACS-MWxd User's Guide

when unso 010
mattingq : vachim. string; - CS&L destination

when registeXr iindIAts "
rýirCegistezrco : egister type; -- destination
ri_.,mdats, integer; -- Source

when rgister register -2,
;t;_eqL~teCtto regiasýter yp; -- destination
3ýrrregiSterf fan register type; source

when register _Address -
;_Sraregsterto reqistertype; -destination

raseqmwt : Ulster type; -source

rýSaaddress-Lndex register type;
rA Address-scal.e scale type;
raaddress offset integer;

wham addCeSSregiSter -
arzsegemnt :register type; -destination

ar address baa. : register type;
-r-addrewo index register type;

ariaddress scaLe, scale-type;
ariaddress offset :integer;
a~rregister~fron register _tye; -source

when register systse address ->
r-sa-cegister to :register-type; -- destination
rsaaddress systan.address; - source

when systQRaddress register ->
a&r address systa.address; - destination
sa7rreg~ frm register _typeO: sourte*

When address-Lowisdiate -31
ai-LSevaent register type; destination
a-Laddress base register type;
a:Iaddressi__ndex :register type;
a Iaddress scale scale type;
ailaddresi offset integer:
a:Iirned~iate :integer; -- source

when systepm address irnediate-2
sa&iaddress system. address; - destination
sali-inediate :Integer; -Source*

when ievdIate register W>
i-riedi"ate Integer; - destination

iregister :register tye -Sao=rc

when imediate-isediate,>
i -L-Iilediatel :Integer; -- leediatel
iiirne~diate2 Integer; -- iediate2

when registerýregIstereIsw"&e ->
r r Iregistorl register type; -destination

rriregjistsr2 :register type; -sore

r-r-IeInoats, integer; -- source2

when register-addressIrnediate -2,
rai_,register registertype; -destination

rais1-egnent : egiSter tye; -- sourcel
r ,a iaddress base register type;

raiTaddresSin~dex register -type;~a Iaddress scale scale type;
raiadres offet:integer;

rai-1imediAce Integer; -SOUrCe2

when registerýsystsim address imediate -)p
r-sa-iregister :register _type; - destination
addrlO system. address; - Sagamei
rSaiiinewwdiate integer; -source2

DACS-80X86 User's Guide

when ad•ress8 reqister Aim ate ->

a4rZJsewt : Iastertype; - detLuation
& L addcas base : rCqister type;
a racdircsa ndex :Cester-type;
a r i-aeddies scal: seato type;
i ..•-.address offset: IteOr;
a Cr gi•Icr : rCeLiatertype; -- soured
aSriUMiedlate Integer; -- ueutac2

when systemaddress rcistcrimadLa:e -3.
sa-r i address systm.address; -- d."Uatioa
s riý_• qIxster rcIster typ; -- sOUr
sari iLediate I:ntOer: -- OuMee2

wheon ther* *0
null J;

*ad ease;
*ad recotd;

cnd mchinoodc;

F.9.2 Restrictions

Only procedures, and not finctions, may contain machine code insertions.

Symbolic names in the form x'ADDRESS can only be used in the foMowing cases:

1) x is an object of scalar type or access type declared as an object, a formal parameter. or
by static renaming.

2) x is an arry with static constrint declared as an object (not as a formal parameter or by
renaming).

3) x is a record declared as an object (not a formal parameter or by renaming).

The mCALL can be used with "name" to call (for) a routine.

Two opcodes to handle labels have been defined:

mjabel: defines a labeL The label number must be in the range 1 <- x <- 999 and is put
in the offset field in the first operand of the MACHINEINSTRUCTION.

mreeset: used to enable use of morm than 999 labels. The label number after a mRESET
must be in the range I<= x <c 999. To avoid errors you must make sure that all
used labels have been defined before a reset, sinc e reset operation cears all used
labels.

All floating instructiom have at most one operand which can be any of the foWlowing:

"* a memory address
" a register or an immediate value
"* an ery in the floating stack

238

DACS48OxS6 User's Guide
Imlemenlaion'Dependemt Characteristics

F33 Examples

The following section contamn examples of how to use the machine code insrtons and lisM the
generited code.

F.9.4 Example Using Labels

The wolowing assebier code can be described by machine code insertions as shown:
M- AX.,

MW-.X .4
0w AX. C
36 I
JR 2
NOW X. AX

1: ADD AX.CZ
2: NOW SS: C31+011. AX

Package examleMe is

procedure test-labels;
Pragna inline (teat labels);

end example NC;

with MACS~lK COOK; USe NACSn= COOK

package body example MC is

procedure teat-lAbels 1s

begin

MACRINK INSTRUCTION' (register Immediate, UISOY, Ax, 1);
MACUMKlNSTRCrIctio (register im~ediate. a MV, CZ, 4);
MACtNsINCsYOcTIMM(reiater register, 1m-C. AX, CS);

MASIK USSOTO'(imediat~e, i36, 1);
MAzDCIIXKSTIOCIOW' (issediate. W.33. 2).
MACRIlE IINSTRUCTIOII(register register, =-NOV, ex. AX);
.'4ACWIIK ISTRUCTION' (immediate, 3 label, 1);
MACRINK INSTRtu=tION (register register. a mADD. Ax. CZ);
MACSINK INSTROCTON' (LWIedUate. a label, 2);
MACNRll INrSTRUtI1ON' (address regi-Ster, aHoy, S5. W1.

OI, scale-I, 0, AX);

end test-labels;

end *xmnl*-MC;

F.9.5 Advanced Topics

This section describes some of the more intricate details of dhe worldngs of the machine
code insertion facility. Special attention is paid to the way the Ad& objects amu mferenced in
the machine code body. and various alternatives ame shown.

239

DACS-80x86 User's Guide
Implemenuation-Dependent Characteristics

F.9J.1 Address Specifications

Package MACHINhE-CODE provides two alternative ways of specifying an address for an
instruction. The first way is referred to as SYSTEM..-ADDRESS and the parameter associated
this one must be specified via OBJECT'ADDRESS in the actual MACHINE_CODE insertion. The
second way closely relates to the addressing which the 80x86 machines employ: an address has
the general form

segment:[base.index'scale+offset]

The ADDRESS type expects the machine insertion to contain values for ALL these fields. The
default value NiL for segment. base. and index may be selected (however, if base is NIL, so
should index be). Scale MUST always be specified as scale-1, scale_2. scale-. or scale_8. For
16 bit targets, scale-i is the only legal scale choice. The offset value must be in the range of
-32768 .. 32767.

F.9.S.2 Referencing Procedure Parameters

The parameters of the procedure that consists of machine code insertions may be
referenced by the machine insertions using the SYSTEM-ADDRESS or ADDRESS formats
explained above. However, there is a great difference in the way in which they may be specified.
whether the procedure is specified as INLINE or not.

INLINE machine insertions can deal with the parameters (and other visible variables) using the
SYSTEM-ADDRESS form. This will be dealt with correctly even if the actual values are
constants. Using the ADDRESS form in this context will be the user's responsibility since the
user obviously attempts to address using register values obtained via other machine insertions. IL
is in general not possible to load the address of a parameter because an 'address' is a two
component structure (selector and offset), and the only instruction to load an immediate address
is the LEA. which will only give the offset. If coding requires access to addresses like this, one
cannot INLINE expand the machine insertions. Care should be taken with references to objects
outside the current block since the code generator in ordcr to calculate the proper frame value
(using the display in each frame) will apply extra registers. The parameter addresses will.
however, be calculated at the entry to the INLINE expanded routine to minimize this problem.
INLINE expanded routines should NOT employ any RET instructions.

Pure procedure machine insertions need to know the layout of the parameters presented to. in this
case, the called procedure. In particular, careful knowledge about the way parameters are passed
is required to achieve a succesful machine procedure. When not INLINE a block is created around
the call which allows addressing of parameters, and code for exiting the procedure ji also
automatic.

The user takes over the responsibility for correct parameter addressing. The rules of Ada
procedure calls must be followed. The calling conventions are summarized below.

240

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F3.5.3 Parameter Transfer

It may be a problem to figure out the corrc number of words which the parameters take up on
the stack (the x value). The following is a short description of the transfer method:

INTEGER types take up at least 1 storage unit. 32 bit integer types take up 2 words, and 64 bit
integer types take up 4 words. In 32 bit targets. 16 bit integer types take up 2 words the low
word being the value and the high word being an alignment word. TASKs are transferd as
INTEGER.

ENUMERATION types take up as 16 bit INTEGER types (see above).

FLOAT types take up 2 words for 32 bit floats ard 4 words for 64 bit floats.

ACCESS types are considered scalar values and consist of a 16 bit segment value and a 16 or
32 bit offset value. When 32 bit offset value, the segment value takes up 2 words the high word
being the aligment word. The offset word(s) are the lowest, and the segment word(s) are the
highest.

RECORD types are always transferred by address. A record is never a scalar value (so no
post-procedure action is carried out when the record parameter is OUT or IN OUT). The
representation is as for ACCESS types.

ARRAY values are transferred as one or two ACCESS values. If the array is constrained, only
the array data address is transferred in the same manner as an ACCESS value. If the army is
unconstrained below, the data address will be pushed by the address of the constraint. In this
case, the two ACCESS values will NOT have any alignment words in 32 bit targets.

Packed ARRAY values (e.g. STRING types) are transferrd as ARRAY valu., th the addition
of an INTEGER bit offset as the highest word(s):

+H: BITOFFSET
+L: DATAADDRESS
+0: CONSTRAINTADDRESS - may be missing

The values L and H depend on the presence/absence of the constraint address and the sizes of
constraint and data addresses.

In the two latter cases, the form parameter'address will always yield the address of the data. If
access is required to constraint or bit offset, the instructions must use the ADDRESS form.

F.9.5.4 Example

A small example is shown below (16 bit target):

procedure unsigned-add

(opI :in integer.
op2 : in integer,
res : out integer);

241

DACS-80x86 User's Guide-- de Charamstc

Notice that machine subparagms caum be functions.

The pumueters take up:

opi :mager I word
op2 iumee I Word
res integer I word

Total 3 3words

Thw body of the pacedure 313K then be the fMlowing msumning that the procedure is

defined at ouiermost package leveLk

Procedure unsigned amd
fop1 in integer;

op i integer;
red out Integer) to

begin
Pragm abstract Awc e insertions cm t);
aa-Instz laazemate Sisck.3.1.0.0,0). - x -3. y I
adaLnstr' (&aa Endof dclPart, 0,0. 0. 0. 0);

pragma abet ract-acode Intsortions (false);

macblue instriction' (register-ssateR address. CICY.
AX, Opi' address);

uacbineInstationl' (register systemaddress. RAOO.
ad.- op2- address);

miach~aeine stnaction (immediate. mN,1);
ua"Ifne-Instructleon' (immediate. m.DI,5;
Imachne~jastruction' (Immediate, ibl 1);
machine instzraction, (system address rgLater. UJ-cvf

resaddress. AX);

Pragma asrc cdtssie tu)
saa-instr(aa Exit subprgu. 0.0.0. nilary. il-atg) ;- (2)
" iaatlas (aa Set block level. 0. 0,0, 0.0); Y-1 - 0

praima abstract Zacode7sertions (false);
end unsigned add;

A routine of this complexity is a candidate for INUMN expumsoný In this case no Changes to fth
above 'machimi niction' stazeientsam miprqurd. Please notice tha ther is a difference between
afk-ing record fields when the routine is M1lINE and when it is amL

type ec is
record

low :imhae.
high :imhoe.

end record;

procedure addL32 is
(api : in * eger
op2 : in kmege
lma : outMr.c)

The parameteui take upi I I + 2 words a 4 wordu. Me RES patunetwillbe
addressed directly when INLINE expanded. ie. it is possible to write:

242

DACS-80x86 User's Guide
irnplementarn-Depende Charmcterstics

machineainmsoon'(sysemuaddresjqistmr. mMOV.
res'addrs AX);

This would. in the not INLINED vetsion. be the same as updating that place on the stack wher
the address of RES is placed. In this ca the insertion must read:

machi _iJnstction'(register_systemaddres. mLES,
SI, res'address);

- LES SI,[BP+...]
machine.insuuction'(addressmgiser, mMOV,

ES, SI. nil, scale-l, 0. AX);
- MOV ES:[SI+O],AX

As may be seen. great cam must be taken to ensue correct machine code insertions. A help
could be to first write the routine in Ada. then disassemble to see the involved addesings, and
finally write the machine procedure using the collected knowledge.

Please notice that INL1NJM machine insertions also generate code for the procedure itself. This
code will be removed when the nocheck option is applied to the compilation. Also not
INLINED procedures using the AA_INSTR insertion, which is explained above, will automatically
get a storage-check call (as do all Ada subprograms). On top of that. 8 bytes are set aside in the
created frame, which may freely be used by the routine as temporary space. The 8 bytes are
located just below the display vector of the frame (from SP and up). The storage-check call will
not be generated when the compiler is invoked with -nocheck.

The user also has the option NOT to create any blocks at all, but then he should be certain that
the return from the routine is made in the proper way (use the RETP instruction (rtumn and pop)
or the RET). Again it will help first to do an Ada version and see what the compiler expects to
be done.

Symbolic fixups ame possible in certain instructions. With these you may build 'symbolic'
instructions byte for byte. The instructions involved all require the operand type NAME (like used
with CALL), and the interpretation is the following:

(name, mDATAD, "MYNAME") a full virtual addes (offset aid selector) of the
symbol MYNAME (no additional offset is possible).

(name, mDATAW, "MYNAME") the offset part of the symbol MYNAME (no additional

offset is possible).

(name, mDATAB. "MYNAME") the selector value of symbol MYNAME

In inlined machine instructions it may be a problen to obtain the addms of a parmenter (her
than the value). The LEA instruction may be used to get the offset pan, but now the following
form allows a way to load a selector value as well:

(systemniaddress, LES. param'address) ES is loaded with the selector of PARAM. If this
selector was e.g. SS, it would be pushed amd popped
into ES. LES may be substituted for LFS and LGS
for 80386.

243

DACS-80x86 User's Guide
11 ~maz~aon-Dependem Oiaraclenscs

F.IG Pckap Tadkype

Thw TaskTypes packages defines the TaskC womRBIock type. This daa muncwe camd be useful
in dehulggng a uming puo, u-. The following package TaskMpes is for a& DACS410x86 except
for DACS-80386PMIDACS-80486PM.

with System:

package Ta-k~ype. i.s

subtype Offset Is System.Onapordlocd;
subtype bleck~d is Systsm.Omsigmoordso

type Teamntzy is ne Systi. OnaLgoedlord;
type antrylfdez is new System.Dnaigaeb~rd;
type Alter"atlv*Zd is new System.0naLpgedord;
type Ticks 15 new System. ord;
type awl Is now Boolenm;
for 3ol six*ze use 3:
type =Atq is new Sytsem.OnsLgeeord;

type Taskt•ate is (UniiL41.
-- The task is Created, but act iva ion
-- has not started yet.

90969d.
-- The task has called an entry, and the
-- call is now accepted. I*. the rendezvous
-- is In progress .

Rumning,
-- Covers all other states.

Delayed,SThe task awaits a timeout to expire.

antryCallinglned,
-- t task has called an entry which
-- is not yet accepted.

EatrycallLngunc~nditIonal,
-The task has called an entry unconditionally.

-- Which is not yet accepted.

Selecting•imed,
-- The task Is waiting In a select statement
- with an open delay alternative.

SelectLngOncoadLtLonal,
-- The task Waits in a select statement
-- entirely with accept statements.

SelectLnT*er=Lnable,
-- The task waits In a select statement
-- with an open terminate alternative.

Accepting.
-- The task waits in an accept tatement.

Synchronizing.
- The task waits in an c pt s•atemt
- with n statement list.

Comleted.
-- The task has completed the emecutien of
-- Its statement list. but not all dependent
-- tasks are terminated.

Terminated)
-- The task and all it$ descendants

are terminated.

244

DACS4Ox86 User's Guide

for Toakntate Us* (Initial -3. 160000
Eageed 3.~ 140000
Weaning -3. 160100
Delayed -3. 160190
antrywalWagMl -)1 160200
RatryC~alliagunenod.Ltioeal.- 16#260
SoLectigiamed "~ 160310
Seleotinj~OnedIitional -3 160390
Selectlaqzalmlale *160410
Accepting "~ l64Av
Shnchronizing 03 160530
Cavleted -30 16450
!eMInated -104040).

for Taskftate' size use 0;

type TaOXTYPeeaCrIpter is
record

priority system.Irierity;
ently-pount V~q
block 14 Bloak~d.
first~osunaddress System. Address;

modul nvmer catg;

codea4ddtess System.Address;
stack size System Derd.
&dmmin Integer;
stack egment size: vlntg;

end record;

type AcCT&AkTYPeOeScCr-ptor is access aask~yp*eaeCriptor;

type WlXSaVeAea is array(1. .48) of SySt4.0ASigAedotd;

type Flags~yp. is
record

Interzuptllag go01;
end record;

Praque pack(TIagsTYPe):

type States~ype is
record

state TaskState;
is-abnormal mood;
Ls-activated 3001;
failure 3001;

end record;
pragma pack (States~ype);

type Aq-type is
record

bp Offset;
add: SystemAddress;

end record;
praqus pack (ACT _type);

pC&am page;
ttype TaskUCCetOllock Is

record
940 Systm.Seambore;
IspNemitor integer;

-Delay queue handling

dnext System. !askfalue;
dprew Systmm.TaskValue;
ddelay Ticks

-. saved registers

33 System.0msipmedord

245

Ma-fted queue handling

44e3Mt System. ?s&Vale

-- Semaphore handling

ernet 85c. aa~au

-Priority fields

priority Systsm.priority.
"sawd~ptiotity Syston.99ierity;

- N*iclleaaoua fields

tun slice SystooOus8inedbgd;
fagse FlagsTY"
Seadycount 8ytemi."Gdz

-- Stack Specification

stookmietart Of fset;
stack-ed Off set;

-- State fields

states Stateslype;

-- Activation hanidling fields

activator :Systoo.?aakalue;
act-chain 375cm. ?aakvalu*;
feteztfaln Syston.Taakalue;

nonet-act :System.fted;
act~bl.ck :slockld:

-- Accept queue fields

partner Systan.TsakValuo;
next-Partner : 575c. ?akvalu*;

-- Ztr7 queue fields

next caller : Systow.easkValue;

-- Plndesvous fields

called task System.?aakvalue:
iSAsynch integer;
tashetflt aaskfAtry;
eat Zyiflods tatry~adex:
entry-assoc System.Address;
CalljParam System.Mddress;
alt..id :Alternativold;
excpid :System. xetiosld;

-- Dependency fields

paroftt task Systac. laskvalue;
Parent block : lockZd;
Child7task :Systow.!ask~alue;
ftext-child Systsm.!aaskflue;
first-child Systam.?aaskflue:
Pre" child :System. askfalue;
chill act Systam."Oft
blo*Ckact Syston.Vard:
tieziinated ~teak: Systes. !ask~alue;

-- Abortion handling field*

busy Systo.wvd:

246

DACS-8086 User's Guide
Iinpele~nuaon-Dependent Climractedisiics

-- ailar fields

tt.d . Acc.askWeceriptoz;
firstCa llec SystMn.TaskValue;

-- tun-Time System fields

A= Ac: typo; -- cf. User's guide 9.4.2
SIgrM: ZategeC; -- Only usd in
Senirst :ntegeC; only used In Ik
?UlockInVuak SystaM. askValue; -- only unsd in M
Falocki"qask systom.!aakalue; onl0.1 used in FM
collection systMn.idiress;

partition : Integer;

TaskCb6ckiiAIt Offset; - to 8sMue LnLine *tQoag check
Lastlaception systum.Dviord; - 2 * 16 bits
savedhdaedir Offset; -- to iprove rendezvous'

-- On save area

-Z When the application Is linked with -am. a special
-- save ate for the NiX is allocated at the very end
-- of wvary TC.
-- ie :

so:

-- came UiXjresent is
-- when TRUX -3 Sheave : INISavehrea;

-- when F&TSA -) null;
-- end case;

end record;

-- The following is to assure that the TC3 ha the expected size:

TCB sLZe : constant WZ.t :- TaskControlalock' size / 8;

subtype Tq ok value is 0Z•TZ range 134 .. 136;
T.?Cok : constant TC ok value :- TauControlalook'size / 4;

end TaskTypes;

F.11 RMS Tasking (OPTIONAL)

The DACS-80x86 systems may run tasking applications by means of Raw Monotonic Scheduling
(RMS). RMS capability is purchased optionally. and is thus not included by default. Please contact
DDC-I for more information regarding RMS and your system. RMS allows the programmer to
guarantee properties of a tasking system, i.e. that tasks will meet their hard deadlines. The RMS
tasking is selected by specifying -rms to the Ada link command.

247

I

